-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathadmm.py
274 lines (241 loc) · 11.3 KB
/
admm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import tensorflow as tf
import numpy as np
def maxpool(x, kern, stride):
return tf.nn.max_pool(tf.pad(x, [[0, 0], [kern//2, kern//2],
[kern//2, kern//2], [0, 0]]),
[ 1, kern, kern, 1 ], [ 1, stride, stride, 1], 'VALID')
def count(x, kern, stride):
kern = tf.ones([kern, kern, 1, 1])
return tf.nn.conv2d(x, kern, [ 1, stride, stride, 1], 'SAME')
def make_admm(sdmask, sd, dmask, d, tv_loss,
num_iters, kernels, filters, strides):
print(sdmask.get_shape().as_list())
print(sd.get_shape().as_list())
n = len(kernels)
mask = sdmask
in_channels = sd.get_shape().as_list()[-1]
print(in_channels)
w = {}
b = {}
m = {}
for i, kern, filt, stride in zip(range(len(filters)), kernels, filters, strides):
stddev = 2/(kern*kern*filt)
w[i] = tf.get_variable('kernel{}'.format(i), [ kern, kern, in_channels, filt ],
dtype = tf.float32,
initializer = tf.random_normal_initializer(stddev =
np.sqrt(stddev)))
b[i] = tf.get_variable('bias{}'.format(i), (), dtype = tf.float32,
initializer = tf.ones_initializer())*0.001
if i > 0:
m[i] = tf.cast(tf.greater(count(m[i-1], kern, stride), 0), tf.float32)
print(m[i].get_shape().as_list())
else:
m[i] = tf.cast(tf.greater(count(sdmask, kern, stride), 0), tf.float32)
in_channels = filt
def Wt(x, i):
return tf.nn.conv2d(x, w[i], [ 1, strides[i], strides[i], 1], 'SAME')
def W(x, i, output_shape):
xshape = x.get_shape().as_list()
batch_size = tf.shape(x)[0]
return tf.nn.conv2d_transpose(x, w[i], output_shape,
[ 1, strides[i], strides[i], 1], 'SAME')
rho = tf.constant(1, dtype = tf.float32)
def phi(x, b, l):
return tf.maximum(x - (tf.abs(b)-l), 0)
def do_iter(l, z, y, m):
ytil = y[0] - l[0]/rho
z[0] = 1/(1+rho)*Wt(sd - mask * W(ytil, 0, tf.shape(sd)), 0) + ytil
if n > 1:
y[0] = 1/(rho+1)*phi(rho*z[0] + W(z[1], 1, tf.shape(z[0])), b[0], l[0])
else:
y[0] = 1/rho*phi(rho*z[0], b[0], l[0])
l[0] = l[0] + rho*(z[0] - y[0])
for i in range(1, n):
ytil = y[i] - l[i]/rho
z[i] = 1/(1+rho)*Wt(m[i-1]*y[i-1] - m[i-1] * W(ytil, i, tf.shape(y[i-1])), i) + ytil
if i < n-1:
y[i] = 1/(rho+1)*phi(rho*z[i] + W(z[i+1], i+1, tf.shape(z[i])), b[i], l[i])
else:
y[i] = 1/rho*phi(rho*z[i], b[i], l[i])
l[i] = l[i] + rho*(z[i] - y[i])
return l, z, y
dshape = sd.get_shape().as_list()
batch_size = tf.shape(sd)[0]
z = {}
l = {}
y = {}
z[0] = Wt(sd, 0)
l[0] = tf.zeros(tf.shape(z[0]), dtype = tf.float32)
y[0] = 1/rho*phi(rho*z[0], b[0], l[0])
print(z[0].get_shape().as_list())
for i in range(1, len(filters)):
z[i] = Wt(m[i-1]*y[i-1], i)
l[i] = tf.zeros(tf.shape(z[i]), dtype = tf.float32)
y[i] = 1/rho*phi(rho*z[i], b[i], l[i])
print(z[i].get_shape().as_list())
loss_mask = dmask
rec_errors = [ 0 for i in range(num_iters) ]
aux_errors = [ 0 for i in range(num_iters) ]
pred_errors = [ 0 for i in range(num_iters) ]
masks = [ tf.reduce_mean(m[i]) for i in range(0, n) ]
for i in range(num_iters):
l, z ,y = do_iter(l, z, y, m)
cur_pred = W(z[0], 0, tf.shape(sd))
rec_err = (tf.reduce_sum(tf.pow(mask*(sd-cur_pred),2))/tf.reduce_sum(mask),)
aux_error = (tf.reduce_mean(tf.pow(z[0] - y[0], 2)),)
for j in range(1, n, 3):
rec_err = rec_err + (tf.reduce_mean(tf.pow(m[j-1]*y[j-1] - m[j-1]*W(z[j], j, tf.shape(y[j-1])), 2)),)
aux_error = aux_error + (tf.reduce_mean(tf.pow(z[j] - y[j], 2)),)
rec_errors[i] = rec_err
#pred_errors[i] = tf.reduce_sum(tf.pow(loss_mask*(d-cur_pred),2))/tf.reduce_sum(loss_mask)
aux_errors[i] = aux_error
# errors[i] = (tf.reduce_sum(tf.pow(mask*(sd-cur_pred),2))/tf.reduce_sum(mask),
# tf.reduce_sum(tf.pow(loss_mask*(d-cur_pred),2))/tf.reduce_sum(loss_mask),
# tf.reduce_sum(tf.pow(mask*(sd-cur_pred),2)) +
# rho/2*tf.reduce_sum(tf.pow(z - y, 2)) + tf.reduce_sum(tf.abs(b*y)),
# tf.reduce_mean(tf.pow(z - y, 2)))
z[-1] = sd
pred = W(z[n-1], n-1, tf.shape(z[n-2]))
for i in range(n-2, -1, -1):
pred = W(pred, i, tf.shape(z[i-1]))
loss = 0.5*tf.reduce_sum(tf.pow(loss_mask*(d-pred), 2), axis=[1,2,3])
loss = tf.reduce_mean(loss)
if tv_loss is not None:
print('Using TV loss')
loss = loss + tv_loss*tf.reduce_mean(tf.image.total_variation(pred))
return pred, loss, { 'b' : b }, {'sdmask' : mask, 'm' : m, 'w' : w}, None
##############################################################
## Start of PnP-Depth modification ##
##############################################################
def make_admm_pnp(sdmask, sd, dmask, d, tv_loss,
num_iters, kernels, filters, strides):
pnp_alpha = 0.01
pnp_iters = 5
n = len(kernels)
mask = sdmask
in_channels = sd.get_shape().as_list()[-1]
# specify network components
w = {}
b = {}
m = {}
for i, kern, filt, stride in zip(range(len(filters)), kernels, filters, strides):
stddev = 2/(kern*kern*filt)
w[i] = tf.get_variable('kernel{}'.format(i), [ kern, kern, in_channels, filt ],
dtype = tf.float32,
initializer = tf.random_normal_initializer(stddev =
np.sqrt(stddev)))
b[i] = tf.get_variable('bias{}'.format(i), (), dtype = tf.float32,
initializer = tf.ones_initializer())*0.001
if i > 0:
m[i] = tf.cast(tf.greater(count(m[i-1], kern, stride), 0), tf.float32)
print(m[i].get_shape().as_list())
else:
m[i] = tf.cast(tf.greater(count(sdmask, kern, stride), 0), tf.float32)
in_channels = filt
def Wt(x, i):
return tf.nn.conv2d(x, w[i], [ 1, strides[i], strides[i], 1], 'SAME')
def W(x, i, output_shape):
xshape = x.get_shape().as_list()
batch_size = tf.shape(x)[0]
return tf.nn.conv2d_transpose(x, w[i], output_shape,
[ 1, strides[i], strides[i], 1], 'SAME')
rho = tf.constant(1, dtype = tf.float32)
def phi(x, b, l):
return tf.maximum(x - (tf.abs(b)-l), 0)
def do_iter(l, z, y, m):
# update z for the first kernel
ytil = y[0] - l[0]/rho
z[0] = 1/(1+rho)*Wt(sd - mask * W(ytil, 0, tf.shape(sd)), 0) + ytil
# update y for the first kernel
if n > 1:
y[0] = 1/(rho+1)*phi(rho*z[0] + W(z[1], 1, tf.shape(z[0])), b[0], l[0])
else:
y[0] = 1/rho*phi(rho*z[0], b[0], l[0])
# update lambda for the first kernel
l[0] = l[0] + rho*(z[0] - y[0])
# update z, y, lambda for the following kernels
for i in range(1, n):
ytil = y[i] - l[i]/rho
z[i] = 1/(1+rho)*Wt(m[i-1]*y[i-1] - m[i-1] * W(ytil, i, tf.shape(y[i-1])), i) + ytil
if i < n-1:
y[i] = 1/(rho+1)*phi(rho*z[i] + W(z[i+1], i+1, tf.shape(z[i])), b[i], l[i])
else:
y[i] = 1/rho*phi(rho*z[i], b[i], l[i])
l[i] = l[i] + rho*(z[i] - y[i])
return l, z, y
dshape = sd.get_shape().as_list()
batch_size = tf.shape(sd)[0]
z = {}
l = {}
y = {}
# initialize z, y, lambda
## first kernel
z[0] = Wt(sd, 0)
l[0] = tf.zeros(tf.shape(z[0]), dtype = tf.float32)
y[0] = 1/rho*phi(rho*z[0], b[0], l[0])
print(z[0].get_shape().as_list())
## the following kernels
for i in range(1, len(filters)):
z[i] = Wt(m[i-1]*y[i-1], i)
l[i] = tf.zeros(tf.shape(z[i]), dtype = tf.float32)
y[i] = 1/rho*phi(rho*z[i], b[i], l[i])
print(z[i].get_shape().as_list())
loss_mask = dmask
# start optimize
def optimization(l_in, z_in, y_in):
rec_errors = [ 0 for i in range(num_iters) ]
aux_errors = [ 0 for i in range(num_iters) ]
pred_errors = [ 0 for i in range(num_iters) ]
masks = [ tf.reduce_mean(m[i]) for i in range(0, n) ]
for i in range(num_iters):
l_in, z_in ,y_in = do_iter(l_in, z_in, y_in, m)
cur_pred = W(z_in[0], 0, tf.shape(sd))
rec_err = (tf.reduce_sum(tf.pow(mask*(sd-cur_pred),2))/tf.reduce_sum(mask),)
aux_error = (tf.reduce_mean(tf.pow(z_in[0] - y_in[0], 2)),)
for j in range(1, n, 3):
rec_err = rec_err + (tf.reduce_mean(tf.pow(m[j-1]*y_in[j-1] - m[j-1]*W(z_in[j], j, tf.shape(y_in[j-1])), 2)),)
aux_error = aux_error + (tf.reduce_mean(tf.pow(z_in[j] - y_in[j], 2)),)
rec_errors[i] = rec_err
aux_errors[i] = aux_error
# get prediction: eq(11)
z_in[-1] = sd
pred = W(z_in[n-1], n-1, tf.shape(z_in[n-2]))
for i in range(n-2, -1, -1):
pred = W(pred, i, tf.shape(z_in[i-1]))
return pred
# utility functions
def lzy2list(l, z, y):
x = [l[0], l[1], l[2]]
x.extend([z[0], z[1], z[2]])
x.extend([y[0], y[1], y[2]])
return x
def list2lzy(x):
l = {0: x[0], 1: x[1], 2: x[2]}
z = {0: x[3], 1: x[4], 2: x[5]}
y = {0: x[6], 1: x[7], 2: x[8]}
return [l, z, y]
def _cond(xadv, i):
return tf.less(i, pnp_iters)
def _body(xadv, i): # xadv is [l[:],z[:],y[:]]
xadv = list2lzy(xadv)
pred = optimization(*xadv)
loss = tf.reduce_mean(0.5*tf.reduce_sum(tf.pow(sdmask*(sd-pred), 2), axis=[1,2,3]))
if tv_loss is not None:
loss = loss + tv_loss*tf.reduce_mean(tf.image.total_variation(pred))
for f_i in range(len(filters)):
grad = tf.gradients(loss, [xadv[0][f_i], xadv[1][f_i], xadv[2][f_i]])
if grad[0] is not None: # update l for f_i'th kernel (no gradient for l --> grad[0] is None)
xadv[0][f_i] = tf.stop_gradient(xadv[0][f_i] - pnp_alpha*tf.sign(grad[0])) # update z for f_i'th kernel
xadv[1][f_i] = tf.stop_gradient(xadv[1][f_i] - pnp_alpha*tf.sign(grad[1])) # update z for f_i'th kernel
if grad[2] is not None: # update i for f_i'th kernel (no gradient in the last kernel)
xadv[2][f_i] = tf.stop_gradient(xadv[2][f_i] - pnp_alpha*grad[2])
xadv = lzy2list(*xadv)
return xadv, i+1
xadv, _ = tf.while_loop(_cond, _body, (lzy2list(l, z, y), 0), back_prop=False, name='fast_gradient')
xadv = list2lzy(xadv)
pred = optimization(*xadv)
final_loss = tf.reduce_mean(0.5*tf.reduce_sum(tf.pow(loss_mask*(d-pred), 2), axis=[1,2,3]))
return pred, final_loss, { 'b' : b }, {'sdmask' : mask, 'm' : m, 'w' : w}, None
##############################################################
## End of PnP-Depth modification ##
##############################################################