-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathutils.py
123 lines (97 loc) · 3.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import h5py
import torch
import shutil
import collections
from PIL import ImageStat
from PIL import Image
import numpy as np
import cv2
import math
import os
def is_valid_number(x):
return not(math.isnan(x) or math.isinf(x) or x > 1e4)
def get_center(x):
return (x - 1.) / 2
def convert_array_to_rec(array):
return Rectangle(array[0],array[1],array[2],array[3])
Rectangle = collections.namedtuple('Rectangle', ['x', 'y', 'width', 'height'])
def convert_bbox_format(bbox, to='center-based'):
x, y, target_width, target_height = bbox.x, bbox.y, bbox.width, bbox.height
if to == 'top-left-based':
x -= get_center(target_width)
y -= get_center(target_height)
elif to == 'center-based':
y += get_center(target_height)
x += get_center(target_width)
else:
raise ValueError("Bbox format: {} was not recognized".format(to))
return Rectangle(x*1.0, y*1.0, target_width*1.0, target_height*1.0)
def get_zbox(bbox, p_rate=0.25):
x, y, target_width, target_height = bbox.x, bbox.y, bbox.width, bbox.height
p = 2 * p_rate * (target_width+target_height)
target_sz = np.sqrt(np.prod((target_width+p) * (target_height+p)))
return Rectangle(x, y, target_sz, target_sz)
def get_xbox(zbox, dx=0, dy=0, padding_rate=1):
x, y, target_width, target_height = zbox.x+dx*0.5*zbox.width, zbox.y+dy*0.5*zbox.height, zbox.width, zbox.height
return Rectangle(x, y, target_width*256.0/128*padding_rate, target_height*256.0/128*padding_rate)
def gen_xz(img, inbox, to='x', pdrt=1):
box = Rectangle(inbox.x, inbox.y, inbox.width*pdrt, inbox.height*pdrt)
x_sz = (255, 255)
z_sz = (127, 127)
bg = Image.new('RGB', (int(box.width), int(box.height)), tuple(map(int, ImageStat.Stat(img).mean)))
bg.paste(img, (-int(box.x-0.5*box.width), -int(box.y - 0.5*box.height)))
if to == 'x':
temp = bg.resize(x_sz)
elif to == 'z':
temp = bg.resize(z_sz)
else:
raise ValueError("Bbox format: {} was not recognized".format(to))
return temp
def save_net(fname, net):
with h5py.File(fname, 'w') as h5f:
for k, v in net.state_dict().items():
h5f.create_dataset(k, data=v.cpu().numpy())
def load_net(fname, net):
with h5py.File(fname, 'r') as h5f:
for k, v in net.state_dict().items():
param = torch.from_numpy(np.asarray(h5f[k]))
v.copy_(param)
def save_checkpoint(state, is_best, task_id, filename='checkpoint.pth.tar'):
if not os.path.exists('./cp'):
os.makedirs('./cp')
torch.save(state, 'cp/'+task_id+filename)
if is_best:
shutil.copyfile('cp/'+task_id+filename, 'cp/'+task_id+'model_best.pth.tar')
def bbox_iou(box1, box2, x1y1x2y2=True):
if x1y1x2y2:
mx = min(box1[0], box2[0])
Mx = max(box1[2], box2[2])
my = min(box1[1], box2[1])
My = max(box1[3], box2[3])
w1 = box1[2] - box1[0]
h1 = box1[3] - box1[1]
w2 = box2[2] - box2[0]
h2 = box2[3] - box2[1]
else:
mx = min(box1[0]-box1[2]/2.0, box2[0]-box2[2]/2.0)
Mx = max(box1[0]+box1[2]/2.0, box2[0]+box2[2]/2.0)
my = min(box1[1]-box1[3]/2.0, box2[1]-box2[3]/2.0)
My = max(box1[1]+box1[3]/2.0, box2[1]+box2[3]/2.0)
w1 = box1[2]
h1 = box1[3]
w2 = box2[2]
h2 = box2[3]
uw = Mx - mx
uh = My - my
cw = w1 + w2 - uw
ch = h1 + h2 - uh
carea = 0
if cw <= 0 or ch <= 0:
return 0.0
area1 = w1 * h1
area2 = w2 * h2
carea = cw * ch
uarea = area1 + area2 - carea
return carea/uarea
def sigmoid(x):
return 1 / (1 + math.exp(-x))