-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcompute_exemplar.py
63 lines (51 loc) · 2.43 KB
/
compute_exemplar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
from utils.model2exemplar import model2examplar
# benchmark backbone
dataset2net = {
"cifar100": 'resnet32',
'imagenet100': 'resnet18'
}
parser = argparse.ArgumentParser(description='A example of computing the number of exemplars.')
parser.add_argument('--dataset', type=str, default="cifar100")
parser.add_argument('--memory_size','-ms',type=int, default=2000)
parser.add_argument('--init_cls', '-init', type=int, default=10)
parser.add_argument('--increment', '-incre', type=int, default=10)
parser.add_argument('--model_name','-model', type=str, default=None)
parser.add_argument('--convnet_type','-net', type=str, default='resnet32')
parser.add_argument('--prefix','-p',type=str, help='exp type', default='benchmark', choices=['benchmark', 'fair', 'auc'])
args = parser.parse_args()
args = vars(args)
if args['prefix'] == 'fair':
for dataset in ['cifar100', 'imagenet100']:
print(f">>> {dataset}-{args['init_cls']}-{args['increment']}:")
for model_name in ['icarl', 'memo']:
args['model_name'] = model_name
args['dataset'] = dataset
args['convnet_type'] = dataset2net[dataset]
if model_name == 'memo':
args['convnet_type'] = "memo_" + args['convnet_type']
exemplar_manager = model2examplar(args)
exemplar_manager.get_infos()
elif args['prefix'] == 'auc':
for dataset in ['cifar100', 'imagenet100']:
args['dataset'] = dataset
if dataset == 'cifar100':
args['init_cls'], args['increment'] = 10, 10
point_list = list(range(1,6))
elif dataset == 'imagenet100':
args['init_cls'], args['increment'] = 50, 5
point_list = list(range(1,7))
else:
raise ValueError("Dataset error!")
for point_idx in point_list:
print(f"{dataset} point_idx:{point_idx}")
if point_idx == 1:
for model_name in ['memo', 'der']:
args['model_name'] = model_name
exemplar_manager = model2examplar(args)
exemplar_manager.get_infos(point_idx=point_idx)
else:
for model_name in ['memo', 'icarl']:
args['model_name'] = model_name
exemplar_manager = model2examplar(args)
exemplar_manager.get_infos(point_idx=point_idx)