forked from SebWouters/CheMPS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest5.py
82 lines (70 loc) · 2.62 KB
/
test5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#
# CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
# Copyright (C) 2013-2018 Sebastian Wouters
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
import numpy as np
import sys
import PyCheMPS2
import ctypes
# Set the seed of the random number generator and cout.precision
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
# Read in the FCIDUMP
psi4group = 7 # d2h: see chemps2/Irreps.h
filename = b'../../tests/matrixelements/N2.STO3G.FCIDUMP'
orbirreps = np.array([-1, -1], dtype=ctypes.c_int) # CheMPS2 reads it in from FCIDUMP
Ham = PyCheMPS2.PyHamiltonian( -1, psi4group, orbirreps, filename )
# Define the symmetry sector
TwoS = 0 # Two times the targeted spin
N = 14 # The number of electrons
Irrep = 0 # The targeted irrep
# Setting up the Problem
Prob = PyCheMPS2.PyProblem(Ham, TwoS, N, Irrep)
Prob.SetupReorderD2h()
# Setting up the ConvergenceScheme
# setInstruction(instruction, D, Econst, maxSweeps, noisePrefactor)
OptScheme = PyCheMPS2.PyConvergenceScheme(1) # 1 instruction
OptScheme.setInstruction(0, 1000, 1e-12, 100, 0.0)
# Do DMRG calculation for the ground state
theDMRG = PyCheMPS2.PyDMRG(Prob, OptScheme)
Energy0 = theDMRG.Solve()
theDMRG.calc2DMandCorrelations()
# Calculate the lowest two excited states
theDMRG.activateExcitations(10)
theDMRG.newExcitation(20.0)
Energy1 = theDMRG.Solve()
theDMRG.calc2DMandCorrelations()
theDMRG.newExcitation(20.0)
Energy2 = theDMRG.Solve()
theDMRG.calc2DMandCorrelations()
# Clean-up
# theDMRG.deleteStoredMPS()
theDMRG.deleteStoredOperators()
# The order of deallocation matters!
del theDMRG
del OptScheme
del Prob
del Ham
del Initializer
# Check whether the test succeeded
OK0 = (np.fabs(Energy0 + 107.648250974014) < 1e-8)
OK1 = (np.fabs(Energy1 + 106.944757308768) < 1e-8)
OK2 = (np.fabs(Energy2 + 106.92314213886 ) < 1e-8)
if (OK0 and OK1 and OK2):
print("================> Did test 5 succeed : yes")
else:
print("================> Did test 5 succeed : no")