forked from SebWouters/CheMPS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest14.py
82 lines (71 loc) · 3.06 KB
/
test14.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#
# CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
# Copyright (C) 2013-2018 Sebastian Wouters
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
import numpy as np
import sys
import PyCheMPS2
import ctypes
# Set the seed of the random number generator and cout.precision
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
# Read in the FCIDUMP
psi4group = 7 # d2h: see chemps2/Irreps.h
filename = b'../../tests/matrixelements/N2.CCPVDZ.FCIDUMP'
orbirreps = np.array([-1, -1], dtype=ctypes.c_int) # CheMPS2 reads it in from FCIDUMP
Ham = PyCheMPS2.PyHamiltonian( -1, psi4group, orbirreps, filename )
# Define the symmetry sector
TwoS = 0 # Two times the targeted spin
N = 14 # The number of electrons
Irrep = 0 # The targeted irrep
# Define the CASSCF
DOCC = np.array([ 3, 0, 0, 0, 0, 2, 1, 1 ], dtype=ctypes.c_int) # see N2.ccpvdz.out
SOCC = np.array([ 0, 0, 0, 0, 0, 0, 0, 0 ], dtype=ctypes.c_int)
NOCC = np.array([ 1, 0, 0, 0, 0, 1, 0, 0 ], dtype=ctypes.c_int)
NDMRG = np.array([ 4, 0, 1, 1, 0, 4, 1, 1 ], dtype=ctypes.c_int)
NVIRT = np.array([ 2, 1, 2, 2, 1, 2, 2, 2 ], dtype=ctypes.c_int)
theDMRGSCF = PyCheMPS2.PyCASSCF(Ham, DOCC, SOCC, NOCC, NDMRG, NVIRT)
# Setting up the ConvergenceScheme
OptScheme = PyCheMPS2.PyConvergenceScheme( 2 ) # 2 instructions
OptScheme.set_instruction( 0, 500, 1e-10, 3, 0.1, 1e-5 )
OptScheme.set_instruction( 1, 1000, 1e-10, 10, 0.0, 1e-10 )
# Setting the DMRGSCFoptions and run DMRGSCF
root_num = 1 # Ground state only
theDMRGSCFoptions = PyCheMPS2.PyDMRGSCFoptions()
theDMRGSCFoptions.setDoDIIS( True )
theDMRGSCFoptions.setWhichActiveSpace( 2 ) # Localized orbitals
IPEA = 0.0
IMAG = 0.0
PSEUDOCANONICAL = False
Energy1 = theDMRGSCF.solve( N, TwoS, Irrep, OptScheme, root_num, theDMRGSCFoptions)
Energy2 = theDMRGSCF.caspt2(N, TwoS, Irrep, OptScheme, root_num, theDMRGSCFoptions, IPEA, IMAG, PSEUDOCANONICAL)
# Clean-up
if theDMRGSCFoptions.getStoreUnitary():
theDMRGSCF.deleteStoredUnitary()
if theDMRGSCFoptions.getStoreDIIS():
theDMRGSCF.deleteStoredDIIS()
# The order of deallocation matters!
del theDMRGSCFoptions
del OptScheme
del theDMRGSCF
del Ham
del Initializer
# Check whether the test succeeded
if (( np.fabs( Energy1 + 109.15104350802 ) < 1e-8 ) and ( np.fabs( Energy2 + 0.116979484098865 ) < 1e-8 )):
print("================> Did test 14 succeed : yes")
else:
print("================> Did test 14 succeed : no")