-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
183 lines (152 loc) · 8.03 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
from torch.nn import Module
import torchvision
from torchvision import transforms
import wandb
import argparse
from dataclasses import dataclass
from tqdm.autonotebook import tqdm, trange
from dataloader import myDataSet
from metrics_calculation import *
from model import *
from combined_loss import *
__all__ = [
"Trainer",
"setup",
"training",
]
## TODO: Update config parameter names
## TODO: remove wandb steps
## TODO: Add comments to functions
@dataclass
class Trainer:
model: Module
opt: torch.optim.Optimizer
loss: Module
@torch.enable_grad()
def train(self, train_dataloader, config, test_dataloader = None):
device = config['device']
primary_loss_lst = [] ## 这个对应的是MSE loss
vgg_loss_lst = []
total_loss_lst = []
UIQM, SSIM, PSNR = self.eval(config, test_dataloader, self.model)
wandb.log({f"[Test] Epoch": 0,
"[Test] UIQM": np.mean(UIQM),
"[Test] SSIM": np.mean(SSIM),
"[Test] PSNR": np.mean(PSNR), },
commit=True
)
for epoch in trange(0,config.num_epochs,desc = f"[Full Loop]", leave = False):
primary_loss_tmp = 0 ## 给出个初始值
vgg_loss_tmp = 0
total_loss_tmp = 0
if epoch > 1 and epoch % config.step_size == 0:
for param_group in self.opt.param_groups:
param_group['lr'] = param_group['lr']*0.7
for inp, label, _ in tqdm(train_dataloader, desc = f"[Train]", leave = False):
inp = inp.to(device)
label = label.to(device)
self.model.train()
self.opt.zero_grad()
out = self.model(inp)
loss, mse_loss, vgg_loss = self.loss(out, label)
loss.backward()
self.opt.step()
primary_loss_tmp += mse_loss.item()
vgg_loss_tmp += vgg_loss.item()
total_loss_tmp += loss.item()
total_loss_lst.append(total_loss_tmp/len(train_dataloader))
vgg_loss_lst.append(vgg_loss_tmp/len(train_dataloader))
primary_loss_lst.append(primary_loss_tmp/len(train_dataloader))
wandb.log({f"[Train] Total Loss" : total_loss_lst[epoch],
"[Train] Primary Loss" : primary_loss_lst[epoch],
"[Train] VGG Loss" : vgg_loss_lst[epoch],},
commit = True
)
if (config.test == True) & (epoch % config.eval_steps == 0):
UIQM, SSIM, PSNR = self.eval(config, test_dataloader, self.model)
wandb.log({f"[Test] Epoch": epoch+1,
"[Test] UIQM" : np.mean(UIQM),
"[Test] SSIM" : np.mean(SSIM),
"[Test] PSNR" : np.mean(PSNR),},
commit = True
)
if epoch % config.print_freq == 0:
print('epoch:[{}]/[{}], image loss:{}, MSE / L1 loss:{}, VGG loss:{}'.format(epoch,config.num_epochs,str(total_loss_lst[epoch]),str(primary_loss_lst[epoch]),str(vgg_loss_lst[epoch])))
# wandb.log()
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
if epoch % config.snapshot_freq == 0:
torch.save(self.model, config.snapshots_folder + 'model_epoch_{}.ckpt'.format(epoch))
@torch.no_grad()
def eval(self, config, test_dataloader, test_model):
test_model.eval()
for i, (img, _, name) in enumerate(test_dataloader):
with torch.no_grad():
img = img.to(config.device)
# generate_img = test_model(img).to(config["device"])
generate_img = test_model(img) # 原来的
torchvision.utils.save_image(generate_img, config.output_images_path + name[0])
SSIM_measures, PSNR_measures = calculate_metrics_ssim_psnr(config.output_images_path,config.GTr_test_images_path)
UIQM_measures = calculate_UIQM(config.output_images_path)
return UIQM_measures, SSIM_measures, PSNR_measures
def setup(config):
if torch.cuda.is_available():
config.device = "cuda"
else:
config.device = "cpu"
# model = UWnet(num_layers=config.num_layers).to(config["device"]) ## 这里设置了层数
model = Mynet().to(config["device"])
transform = transforms.Compose([transforms.Resize((config.resize,config.resize)),transforms.ToTensor()])
train_dataset = myDataSet(config.input_images_path,config.label_images_path,transform, True)
train_dataloader = torch.utils.data.DataLoader(train_dataset,batch_size = config.train_batch_size,shuffle = False)
print("Train Dataset Reading Completed.")
print(model)
loss = combinedloss(config)
opt = torch.optim.Adam(model.parameters(), lr=config.lr)
trainer = Trainer(model, opt, loss)
if config.test:
test_dataset = myDataSet(config.test_images_path, None, transform, False)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=config.test_batch_size, shuffle=False)
print("Test Dataset Reading Completed.")
return train_dataloader, test_dataloader, model, trainer
return train_dataloader, None, model, trainer
def training(config):
# Logging using wandb
wandb.init(project = "underwater_image_enhancement_UWNet")
wandb.config.update(config, allow_val_change = True)
config = wandb.config
ds_train, ds_test, model, trainer = setup(config)
trainer.train(ds_train, config,ds_test)
print("==================")
print("Training complete!")
print("==================")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--input_images_path', type=str, default="./data/input/", help='path of input images(underwater images) default:./data/input/')
parser.add_argument('--label_images_path', type=str, default="./data/label/", help='path of label images(clear images) default:./data/label/')
parser.add_argument('--test_images_path', type=str, default="./data/input/", help='path of input images(underwater images) for testing default:./data/input/')
# parser.add_argument('--GTr_test_images_path', type = str, default="./data/input/", help='path of input ground truth images(underwater images) for testing default:./data/input/') ## 这个会不会应该是label??
parser.add_argument('--GTr_test_images_path', type = str, default="./data/input/", help='path of input ground truth images(underwater images) for testing default:./data/input/') ## 这个会不会应该是label??
parser.add_argument('--test', default=True)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--step_size',type=int,default=50,help="Period of learning rate decay") #
parser.add_argument('--num_epochs', type=int, default=200) ##
parser.add_argument('--train_batch_size', type=int, default=8,help="default : 1")
parser.add_argument('--test_batch_size', type=int, default=8,help="default : 1")
parser.add_argument('--resize', type=int, default=256,help="resize images, default:resize images to 256*256") ## 对图像做了归一化
parser.add_argument('--cuda_id', type=int, default=0,help="id of cuda device,default:0")
parser.add_argument('--print_freq', type=int, default=1)
parser.add_argument('--snapshot_freq', type=int, default=2)
parser.add_argument('--snapshots_folder', type=str, default="./snapshots/")
parser.add_argument('--output_images_path', type=str, default="./data/output/")
# parser.add_argument('--num_layers', type=int, default=3) ##
parser.add_argument('--eval_steps', type=int, default=1)
config = parser.parse_args()
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
if not os.path.exists(config.output_images_path):
os.mkdir(config.output_images_path)
training(config)