Skip to content

Latest commit

 

History

History
202 lines (136 loc) · 8.9 KB

Mobile.md

File metadata and controls

202 lines (136 loc) · 8.9 KB

MLModelCamera使用拖放功能将.mlmodel文件作为实时图像分级应用进行测试 https://github.com/shu223/MLModelCamera

在macOS 10.14 Beta上运行iOSMac应用程序的工具 https://github.com/zhuowei/MarzipanTool

AR相册 Photo Album For AR https://github.com/SherlockQi/HeavenMemoirs

30 个小型 Swift Apps,可以用来上手学习、练习移动开发 https://github.com/soapyigu/Swift-30-Projects

关于 iOS 性能优化梳理 https://github.com/skyming/iOS-Performance-Optimization

gifski-app:Gifski这个开源程序可以将一系列图片或一段视频转化为高质量的gif https://github.com/sindresorhus/gifski-app

iOS开发者工具集锦 https://github.com/LeoMobileDeveloper/ios-developer-tools

Gitter for GitHub - 可能是目前颜值最高的GitHub小程序客户端 https://github.com/huangjianke/Gitter

TensorFlow Lite Core ML:苹果移动设备上的深度网络快速推理 https://blog.tensorflow.org/2020/04/tensorflow-lite-core-ml-delegate-faster-inference-iphones-ipads.html

A PyTorch implementation of Pelee: A Real-Time Object Detection System on Mobile Devices https://github.com/yxlijun/Pelee.Pytorch

【在iOS应用中运行Python代码】’PyBridge-iOS - Reuse Python code in native iOS applications' https://github.com/joaoventura/pybridge-ios

Google MediaPipe更新设备端实时手势跟踪 https://github.com/google/mediapipe/blob/master/mediapipe/docs/hand_tracking_mobile_gpu.md https://google.github.io/mediapipe/solutions/hands

'YOLOv5 in PyTorch > ONNX > CoreML > iOS'

https://github.com/ultralytics/yolov5

用Core ML完全在移动端训练卷积神经网络 https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training

Real-time semantic image segmentation on mobile devices

https://github.com/sercant/mobile-segmentation

This repo contains the official Pytorch reimplementation of the paper "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications". https://github.com/denru01/netadapt

Accurate Hand Keypoint Localization on Mobile Devices

https://github.com/FORTH-ModelBasedTracker/MonocularRGB_2D_Handjoints_MVA19

'MNNKit - 基于端上推理引擎MNN提供的系列应用层解决方案,主要面向Android/iOS移动应用开发者’ https://github.com/alibaba/MNNKit

用Fritz在手机上训练、部署多种机器学习模型 https://github.com/fritzlabs/fritz-models

【基于Core ML的iOS深度预测Demo】 https://github.com/tucan9389/DepthPrediction-CoreML

【SwiftUI/PyTorch Mobile手机端机器学习实例】 https://medium.com/flawless-app-stories/on-device-machine-learning-with-swiftui-and-pytorch-mobile-aa0dcec5d881

Android 进阶路线知识图谱 + 干货资料收集 https://github.com/feelschaotic/AndroidKnowledgeSystem

'awesome-wepy - 微信小程序组件化开发框架wepy开发资源汇总' https://github.com/aben1188/awesome-wepy

【Pyto:iOS上的Python开发环境】 https://github.com/ColdGrub1384/Pyto

PyTorch iOS examples https://github.com/pytorch/ios-demo-app

iPhone手机上的ESPNetv2实时语义分割 https://github.com/sacmehta/ESPNetv2-COREML

【手机端机器学习:你能用它做什么?】 https://pan.baidu.com/s/1s-BI3M9zVbcM5hKtI1iWXQ

PyTorch Mobile:部署到手机上的端到端PyTorch深度学习工作流

https://pytorch.org/mobile/home/

Mobile AI Compute Engine Model Zoo https://github.com/XiaoMi/mace-models

深度学习移动端车型识别,支持1776种常见车辆品牌及子品牌 https://github.com/zeusees/HyperVID

Accelerate Pelee with tensorRT(over 200FPS(5ms) on Titan V and 70FPS(11ms) on jetson TX2(FP32)) https://github.com/ginn24/Pelee-TensorRT

移动设备神经网络推理性能端到端测试工具 https://github.com/XiaoMi/mobile-ai-bench

移动设备高性能实时网络/语义分割文献资源列表 https://github.com/wpf535236337/real-time-network

用 Swift 从头开始搭建/训练 XResNet https://nbviewer.jupyter.org/github/jamesdellinger/fastai_deep_learning_course_part2_v3/blob/master/13_swift_resnet_pipeline_s4tf_v04_my_reimplementation.ipynb?flush_cache=true

一款可以用电脑显示并控制 Android 手机的开源工具。连接方便使用方便,手机无需 root、无需安装任何应用。支持 USB、Wi-Fi 两种方式连接,支持 Windows、macOS、Linux 三种操作系统。注意电脑端需要安装 adb 工具

https://github.com/Genymobile/scrcpy

SwiftAI - Swift for TensorFlow's high-level API, modeled after fastai https://github.com/fastai/swiftai

AidLearning:安卓平台上的Linux+Anroid+AI+Python四合一环境,支持主流深度学习框架和图形界面开发,旧手机、旧平板可以翻出来搞一下

https://github.com/aidlearning/AidLearning-FrameWork

Android/iOS实时单人姿态估计

https://github.com/edvardHua/PoseEstimationForMobile

(iOS、安卓和边缘设备)移动机器学习资源精选列表 https://github.com/fritzlabs/Awesome-Mobile-Machine-Learning

[ECCV 2018] Compressed models from AMC: AutoML for Model Compression and Acceleration on Mobile Devices. https://github.com/mit-han-lab/amc-compressed-models

Core ML实现的人体姿态估计 https://github.com/tucan9389/PoseEstimation-CoreML

手机端人脸识别方案 https://github.com/becauseofAI/MobileFace

Towards Real-Time Automatic Portrait Matting on Mobile Devices https://github.com/hyperconnect/MMNet

手机端高性能卷积神经网络推理引擎概览

https://github.com/HolmesShuan/CNN-Inference-Engine-Quick-View

iOS机器学习挑战项目大列表 https://github.com/motlabs/awesome-ml-demos-with-ios

【手机端神经网络前向计算框架NCCNN相关资源大列表】’Awesome-NCNN - 😎A Collection Awesome NCNN-based Projects' https://github.com/zchrissirhcz/awesome-ncnn

【YOLOv5安卓平台基于NCNN框架的C++实现】

https://github.com/sunnyden/YOLOV5_NCNN_Android

OpenCV for Android环境搭建 https://zhuanlan.zhihu.com/p/86853697?utm_source=weibo&utm_medium=social&utm_oi=853246989066977280&utm_content=snapshot

ncnn在Android的一个测试,包含了人脸检测(face detection),人脸属性(face attributes),人脸识别(face recognition)。车辆检测(Vehicle detection),车牌检测(plate detection),车牌识别(plate recognition);人头检测(head detection)的流程 https://github.com/791136190/ncnn_android_face_vehicle/tree/master/app

Anbox,可在 GNU / Linux 系统上轻松运行 Android 系统 https://github.com/anbox/anbox

MetalCamera:Mac/iOS上支持GPU的图像/视频处理 https://github.com/jsharp83/MetalCamera

IOS: Inter-Operator Scheduler for CNN Acceleration https://github.com/mit-han-lab/inter-operator-scheduler

安卓手机上的NanoDet目标检测演示项目

github.com/nihui/ncnn-android-nanodet

高效学习神器 Anki 安卓客户端。Anki 是一个帮助学习的记忆卡片软件,卡片正面是问题背面是答案,然后根据记忆公式帮你复习和记牢 https://github.com/ankidroid/Anki-Android

MNN_Demo - 移动端MNN部署学习笔记。支持Android与iOS github.com/cmdbug/MNN_Demo

ncnn_Android_face:用ncnn实现的安卓平台人脸检测与分割范例 github.com/FeiGeChuanShu/ncnn_Android_face

GPU Accelerated TensorFlow Lite applications on Android NDK https://github.com/terryky/android_tflite

PyTorch手机Demo Apps概览 #教学 https://pytorch.org/blog/mobile-demo-apps-overview/

TFLite Mobile Generic Object Localizer:未知目标检测

github.com/ibaiGorordo/TFLite-Mobile-Generic-Object-Localizer

ncnn_Android_MoveNet:用ncnn实现的安卓手机端MoveNet姿态估计 github.com/FeiGeChuanShu/ncnn_Android_MoveNet

ONNX-Mobile-Human-Pose-3D:Mobile Human Pose模型的3D人体姿态估计 github.com/ibaiGorordo/ONNX-Mobile-Human-Pose-3D

PortraitSeg - 开源移动端高效人像分割

github.com/zeusees/PortraitSeg

yolov5s_android:安卓设备运行的yolov5s github.com/lp6m/yolov5s_android

’XXTouchNG - Next generation XXTouch for iOS 13 and above. System-wide iOS Automation Toolkit.(介绍值得看看,作者的亲身经历:技术是一把双刃剑,使用不当,可能将自己带入深渊)’ GitHub: github.com/XXTouchNG/XXTouchNG

GitHub 上开源的 WhatsApp 克隆项目:What's App Clone Project,实现了较为完善的聊天 UI 组件、实时消息系统,满足可重用性、并行构建等开发设计理念。 主要演示的技术功能如下:

  • 使用 Jetpack Compose 实现整个 UI 元素;
  • 使用 Hilt 和 AppStartup 等 Jetpack 库实现 Android 架构组件;
  • 使用 Kotlin 协程执行后台任务;
  • 将聊天系统与 Stream Chat SDK 集成以进行实时事件处理。 GitHub:github.com/GetStream/whatsApp-clone-compose

'ComWeChatRobot - PC微信机器人,实现获取通讯录,发送文本、图片、文件等消息,封装COM接口供Python等调用' by Jack Li GitHub: github.com/ljc545w/ComWeChatRobot

'lamda - Android reverse engineering & automation framework | 史上最强安卓抓包/逆向/HOOK & 云手机/自动化辅助框架' by REV1SI0N GitHub: github.com/rev1si0n/lamda