Skip to content

Latest commit

 

History

History
1164 lines (770 loc) · 53.9 KB

Detection.md

File metadata and controls

1164 lines (770 loc) · 53.9 KB

Object Detection in 20 Years: A Survey https://arxiv.org/abs/1905.05055

Recent Advances in Deep Learning for Object Detection https://www.arxiv-vanity.com/papers/1908.03673/

基于深度学习的目标检测最新进展(2013-2019) https://mp.weixin.qq.com/s/T6qeaj2K-rfZA7yrkWrhhA

小目标检测论文/相关资源大列表 https://github.com/kuanhungchen/awesome-tiny-object-detection

【CenterNet目标检测】’CenterNet Pro Max - Experiments based on CenterNet (more backbones, TensorRT deployment and mask head)' https://github.com/jinfagang/CenterNet_Pro_Max

Imbalance Problems in Object Detection: A Review https://github.com/kemaloksuz/ObjectDetectionImbalance

基于MediaPipe的手机端实时3D物体检测 https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html https://arxiv.org/abs/2003.03522

【5大目标检测挑战与解决方案】《5 Significant Object Detection Challenges and Solutions》 https://medium.com/m/global-identity?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2F5-significant-object-detection-challenges-and-solutions-924cb09de9dd

卫星图像快速目标检测 https://github.com/CosmiQ/simrdwn

A higher performance PyTorch implementation of Single-Shot Refinement Neural Network for Object Detection https://github.com/luuuyi/RefineDet.PyTorch

【开源目标检测工具包(PyTorch)】’mmdetection - Open MMLab Detection Toolbox' by Multimedia Laboratory, https://github.com/open-mmlab/mmdetection

Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks. https://github.com/e2crawfo/auto_yolo

完整的目标检测项目。结构简洁明了,中文注释。适宜新手入门、目标检测任务参考,甚至直接基于本项目实现目标检测任务。

https://github.com/yatengLG/SSD-Pytorch

一个以 Pytorch 深度学习库实现的 retinanet 目标检测模型。项目拥有清晰的结构、完善的注释以及详细的使用说明。适用于有些许深度学习基础的初学者进行学习或在实际的目标检测项目中使用

https://github.com/yatengLG/Retinanet-Pytorch

Official Tensorflow implementation of drl-RPN: Deep Reinforcement Learning of Region Proposal Networks (CVPR 2018 paper) https://github.com/aleksispi/drl-rpn-tf

OpenCV 'dnn' with NVIDIA GPUs: 1549% faster YOLO, SSD, and Mask R-CNN | PyImageSearch https://www.pyimagesearch.com/2020/02/10/opencv-dnn-with-nvidia-gpus-1549-faster-yolo-ssd-and-mask-r-cnn/

'CenterNet - An easy to understand and better performance version of CenterNet' https://github.com/FateScript/CenterNet-better

Enriched Feature Guided Refinement Network for Detection,ICCV2019. https://github.com/Ranchentx/EFGRNet

FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19) https://arxiv.org/abs/1904.01355 https://github.com/Adelaide-AI-Group/FCOS

Monocular 3D Object Detection https://github.com/kujason/monopsr

Benchmark for Generic Product Detection: A Low Data Baseline for Dense Object Detection https://github.com/ParallelDots/generic-sku-detection-benchmark

PyTorch implementation for MatrixNet object detection architecture. https://github.com/arashwan/matrixnet

This is a pytorch implementation of VoVNet backbone networks as described in the paper An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection. https://github.com/stigma0617/VoVNet.pytorch

YOLOv3 object detection architecture with uncertainty estimation. https://github.com/flkraus/bayesian-yolov3

ThunderNet: Towards Real-time Generic Object Detection https://github.com/ouyanghuiyu/Thundernet_Pytorch

Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters https://github.com/axelBarroso/Key.Net

yolov3 with mobilenet v2 and ASFF https://github.com/ruinmessi/ASFF

Code for calculating the upper bound AP in object detection https://github.com/aliborji/DeetctionUpperbound

Learning RoI Transformer for Detecting Oriented Objects in Aerial Images https://github.com/dingjiansw101/RoITransformer_DOTA

Fast Learning of Temporal Action Proposal via Dense Boundary Generator! https://github.com/TencentYoutuResearch/ActionDetection-DBG

This project is the code for implementing the GridMask augmentation for image classification and object detection. https://github.com/akuxcw/GridMask

The implementation of "Towards accurate one-stage object detection with AP-loss" and its journal version. https://github.com/cccorn/AP-loss

A loss function (Weighted Hausdorff Distance) for object localization in PyTorch https://github.com/HaipengXiong/weighted-hausdorff-loss

Mask-Guided Attention Network for Occluded Pedestrian Detection. (ICCV'19) https://github.com/Leotju/MGAN

This project provides the implementation for DetNAS: Backbone Search for Object Detection. https://github.com/megvii-model/DetNAS

Paper: CVPR2018, Learning Rich Features for Image Manipulation Detection https://github.com/LarryJiang134/Image_manipulation_detection

Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving (ICCV, 2019) https://github.com/jwchoi384/Gaussian_YOLOv3

A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

https://github.com/becauseofAI/lffd-pytorch

《Accelerating Object Detection by Erasing Background Activations》 https://www.arxiv-vanity.com/papers/2002.01609/

CenterNet: Objects as Points in Tensorflow https://github.com/Stick-To/CenterNet-tensorflow

Feature pyramid network (FPN) with online hard example mining (OHEM) https://github.com/gurkirt/FPN.pytorch1.0

Reasoning-RCNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection (CVPR2019 Oral) https://github.com/chanyn/Reasoning-RCNN

Lists the papers related to imbalance problems in object detection https://github.com/kemaloksuz/ObjectDetectionImbalance

M3D-RPN: Monocular 3D Region Proposal Network for Object Detection https://github.com/garrickbrazil/M3D-RPN

The PyTorch Implementation of F-ConvNet for 3D Object Detection https://github.com/zhixinwang/frustum-convnet

【AdelaiDet:开源多实例级检测应用工具箱】 https://github.com/aim-uofa/adet

【面向目标检测标注的无人机图像及其YOLO模型】 https://github.com/chuanenlin/drone-net

【Detecto:用5行代码构建计算机视觉/目标检测模型的Python包】 https://github.com/alankbi/detecto

《Evaluating Weakly Supervised Object Localization Methods Right》 https://github.com/clovaai/wsolevaluation

PyTorch实现的DenseBox多任务学习目标检测/关键点定位

https://github.com/CaptainEven/DenseBox

Learning Spatial Fusion for Single-Shot Object Detection

https://github.com/ruinmessi/ASFF

【Elixir/Phoenix实时目标检测】 https://www.poeticoding.com/real-time-object-detection-with-phoenix-and-python/

【Sightseer:(TensorFlow 1.15)计算机视觉/目标检测最新预训练模型集成库 https://github.com/rish-16/sight

【YOLOv3各框架复现项目汇总(TensorFlow/PyTorch/Keras/Caffe/MXNet)】 https://github.com/amusi/YOLO-Reproduce-Summary

【路面坑洼检测】

https://github.com/JordanMicahBennett/Smart-Ai-Pothole-Detector------Powered-by-Tensorflow-TensorRT-on-Google-Colab-and-or-Jetson-Nano

【tf.keras实现的YOLOv3/v2目标检测pipeline】 https://github.com/david8862/keras-YOLOv3-model-set

【PyTorch实现的YOLOv3】 https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch

【ZazuML:面向实例检测的开源AutoML项目】 https://github.com/dataloop-ai/ZazuML

“目标检测和图像分类算法” https://www.bilibili.com/video/av80558087/

'基于CenterNet训练的目标检测器和姿态估计模型' tensorrt

https://github.com/bleakie/CenterMulti

'YOLOv3 Darknet GPU Inference API for Linux' https://github.com/BMW-InnovationLab/BMW-YOLOv3-Inference-API-GPU

【Tensorflow目标检测图形化训练界面 https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI

【YOLO3的通道剪枝/层剪枝压缩】 https://github.com/tanluren/yolov3-channel-and-layer-pruning

'Strongeryolo-pytorch - Pytorch implementation of Stronger-Yolo with channel-pruning.' https://github.com/wlguan/Stronger-yolo-pytorch

Side-Aware Boundary Localization for More Precise Object Detection https://github.com/open-mmlab/mmdetection

【自动安全帽佩戴检测】’Automatic Hardhat Wearing Detection - Helmet Detection on Construction Sites' https://github.com/wujixiu/helmet-detection

'YOLOv3-complete-pruning - 对YOLOv3及Tiny的多种剪枝版本,以适应不同的需求' https://github.com/coldlarry/YOLOv3-complete-pruning

Learning Lightweight Lane Detection CNNs by Self Attention Distillation https://github.com/cardwing/Codes-for-Lane-Detection

Data Priming Network for Automatic Check-Out - ACMMM 2019 https://github.com/lufficc/DPNet

行人检测(Pedestrian Detection)论文整理 https://github.com/xingkongliang/Pedestrian-Detection

'RFSong行人检测网络 - 重新设计的轻量级RFB进行行人检测,AP达到0.7993,参数量仅有3.1MB,200 FPS' https://github.com/songwsx/RFSong-7993

trident net + refinedet 目标检测 https://github.com/wei-yuma/multitrident

NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. https://arxiv.org/abs/1904.07392 https://github.com/DetectionTeamUCAS/NAS_FPN_Tensorflow

AnchorFreeDetection - list the paper for recently anchor free detector' https://github.com/VCBE123/AnchorFreeDetection

Light-Weight RetinaNet for Object Detection https://github.com/PSCLab-ASU/LW-RetinaNet

视频目标检测文献大列表 https://github.com/ZHANGHeng19931123/awesome-video-object-detection

A Keras implementation of CenterNet with pre-trained model (unofficial) https://github.com/see--/keras-centernet

Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting https://github.com/liuwei16/ALFNet

An mmdetection based implementation of updated Grid R-CNN published on CVPR 2019. https://github.com/STVIR/Grid-R-CNN

Python/YOLOv3自定义对象检测器实战指南 http://emaraic.com/blog/yolov3-custom-object-detector

RetinaNet: how Focal Loss fixes Single-Shot Detection https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de

Object detection with multi-level representations generated from deep high-resolution representation learning (HRNetV2h). https://github.com/HRNet/HRNet-MaskRCNN-Benchmark

NAS-FCOS: Fast Neural Architecture Search for Object Detection https://arxiv.org/abs/1906.04423 https://github.com/Lausannen/NAS-FCOS

Some improvements about FCOS (FCOS: Fully Convolutional One-Stage Object Detection). https://github.com/yqyao/FCOS_PLUS

Focal Loss for Dense Rotation Object Detection https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation

PyTorch code for locating objects without bounding boxes - Loss function and trained models

https://github.com/javiribera/locating-objects-without-bboxes

显著目标检测(SOD)代码大列表

https://github.com/jiwei0921/SOD-CNNs-based-code-summary-

Human vs Machine Attention in Neural Networks: A Comparative Study

https://arxiv.org/abs/1906.08764

YOLOv3-model-pruning - 对 YOLOv3 做模型剪枝(network slimming),对于 oxford hand 数据集,模型剪枝后的参数量减少 80%,Infer 的速度达到原来 2 倍,mAP 基本不变

https://github.com/Lam1360/YOLOv3-model-pruning

Grid R-CNN Plus: Faster and Better https://github.com/STVIR/Grid-R-CNN

卫星图像快速目标检测 小目标

https://github.com/avanetten/simrdwn

基于PyTorch的开源人群计数框架

https://github.com/gjy3035/C-3-Framework

This repository is the pytorch implementation for the crowd counting model, LSC-CNN, proposed in the paper - Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection. https://github.com/val-iisc/lsc-cnn

PyTorch codes for our paper "PCL: Proposal Cluster Learning for Weakly Supervised Object Detection".

https://github.com/ppengtang/pcl.pytorch

【目标检测】CornerNet: Detecting Objects as Paired Keypoints https://github.com/wenguanwang/DHF1K 本文是密歇根大学发表于ECCV 2018的工作。当前的目标检测算法大多基于Anchor,引入Anchor容易导致正负样本不均衡和引入更多超参数。本文在不采用Anchor的前提下取得了不错效果,是一篇非常有意思的探索工作。具体来说,论文借鉴了人体关键点检测的思路来做目标检测,通过检测目标框的左上角和右下角两个关键点就能得到预测框。其次,整个检测网络训练是从头开始的,且不基于预训练的分类模型,这使得用户能够自由设计特征提取网络,不用受预训练模型的限制。

This is a tensorflow implementation of R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy. https://arxiv.org/abs/1811.07126 https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow

Official implementation of paper "Learning Attraction Field Map for Robust Line Segment Detection" (CVPR 2019)

https://github.com/cherubicXN/afm_cvpr2019

D2-Net: A Trainable CNN for Joint Description and Detection of Local Features https://github.com/mihaidusmanu/d2-net

(Python/OpenCV)Mask RCNN自动车牌识别系统 https://github.com/ria-com/nomeroff-net

YOLOv3/Darknet实现SOTA的Logo检测 https://platform.ai/blog/page/7/new-state-of-the-art-in-logo-detection-using-yolov3-and-darknet/

Code of Cascaded Partial Decoder for Fast and Accurate Salient Object Detection (CVPR2019) https://github.com/wuzhe71/CPD

DSFD implement with pytorch https://github.com/yxlijun/DSFD.pytorch

Code for bottom-up object detection by grouping extreme and center points https://github.com/xingyizhou/ExtremeNet

Implemention of lanenet model for real time lane detection using deep neural network model https://maybeshewill-cv.github.io/lanenet-lane-detection/ https://github.com/MaybeShewill-CV/lanenet-lane-detection

Spatial CNN for traffic lane detection (AAAI2018) https://github.com/XingangPan/SCNN

FCOS: Fully Convolutional One-Stage Object Detection https://github.com/tianzhi0549/FCOS https://github.com/DetectionTeamUCAS/FCOS_GluonCV

CenterNet is a framework for object detection with deep convolutional neural networks. https://github.com/Duankaiwen/CenterNet

Codebase for AAAI2019 "M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network"

https://github.com/qijiezhao/M2Det

FashionAI Key Points Detection using CPN model in Pytorch https://github.com/gathierry/FashionAI-KeyPointsDetectionOfApparel

Real-time Multi-person tracker using YOLO v3 and deep_sort with tensorflow https://github.com/Qidian213/deep_sort_yolov3

Fast Online Object Tracking and Segmentation: A Unifying Approach http://www.robots.ox.ac.uk/~qwang/SiamMask/

Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro https://github.com/qiaoguan/Person-reid-GAN-pytorch

Codebase of the paper "Feature Intertwiner for Object Detection", ICLR 2019 https://github.com/hli2020/feature_intertwiner

High-level Semantic Feature Detection: A New Perspective for Pedestrian Detection, CVPR, 2019 https://github.com/liuwei16/CSP

Object detection with multi-level representations generated from deep high-resolution representation learning (HRNetV2h). https://github.com/HRNet/HRNet-Object-Detection

R2CNN: Rotational Region CNN Based on FPN (Tensorflow)

https://github.com/yangxue0827/R2CNN_FPN_Tensorflow

Bounding Box Regression with Uncertainty for Accurate Object Detection (CVPR'19)

https://github.com/yihui-he/KL-Loss

Code for CVPR 2019 paper "Libra R-CNN: Towards Balanced Learning for Object Detection"

https://github.com/OceanPang/Libra_R-CNN

MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Detection and Localization | KITTI https://github.com/Zengyi-Qin/MonoGRNet

Pytorch implementation of Bi-box Regression for Pedestrian Detection and Occlusion Estimation (ECCV2018) https://github.com/rainofmine/Bi-box_Regression

车道检测 https://github.com/amusi/awesome-lane-detection

[ECCV 2018] Spatial-Temporal Memory Networks for Video Object Detection https://github.com/fanyix/STMN

PyTorch实现的Detectron目标检测 https://github.com/adityaarun1/Detectron.pytorch

PyTorch实现的Yolo3 https://github.com/zhanghanduo/yolo3_pytorch

深度学习目标检测文献列表(技术路线) https://github.com/hoya012/deep_learning_object_detection

【目标检测】Gradient Harmonized Single-stage Detector 本文是香港中文大学发表于AAAI 2019的工作,文章从梯度的角度解决样本中常见的正负样本不均衡的问题。从梯度的角度给计算loss的样本加权,相比与OHEM的硬截断,这种思路和focal loss一样属于软截断,文章设计的思路不仅可以用于分类loss改进,对回归loss也很容易进行嵌入。不需要考虑focal loss的超参设计问题,同时文章提出的方法效果Focal Loss更好。创新点相当于FL的下一步方案,给出了解决class-imbalance的另一中思路,开了一条路,估计下一步会有很多这种方面的paper出现。 https://github.com/libuyu/GHM_Detection https://www.paperweekly.site/papers/2654

Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection https://github.com/yihui-he/softer-NMS

Code for my master thesis: Vehicle Detection and Pose Estimation for Autonomous Driving https://github.com/libornovax/master_thesis_code

目标识别神经网络评价 https://github.com/Cartucho/mAP

Crack-pot: Autonomous Road Crack and Pothole Detection https://github.com/sukhad-app/Crack-Pot

Precise RoI Pooling with coordinate gradient support, proposed in the paper "Acquisition of Localization Confidence for Accurate Object Detection" (https://arxiv.org/abs/1807.11590). https://github.com/vacancy/PreciseRoIPooling

Faster R-CNN and Mask R-CNN in PyTorch 1.0 - Fast, modular reference implementation of Semantic Segmentation and Object Detection algorithms in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark

The implementation of “Gradient Harmonized Single-stage Detector” published on AAAI 2019. https://github.com/libuyu/GHM_Detection

YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers https://github.com/reu2018DL/YOLO-LITE

目标识别最新综述 https://www.paperweekly.site/papers/2461

SimpleDet:简单、通用的目标检测/实例识别框架 https://github.com/TuSimple/simpledet

BoxCars Fine-Grained Recognition of Vehicles https://github.com/JakubSochor/BoxCars

Weakly Supervised Dataset Collection for Robust Person Detection

https://github.com/cvpaperchallenge/FashionCultureDataBase_DLoader

Faster RCNN model in Pytorch version, pretrained on the Visual Genome with ResNet 101 https://github.com/shilrley6/Faster-R-CNN-with-model-pretrained-on-Visual-Genome

【Detecto:PyTorch目标检测库】 https://github.com/alankbi/detecto

《YOLOv4: Optimal Speed and Accuracy of Object Detection》 https://github.com/AlexeyAB/darknet

【YOLOv4的PyTorch最小化实现】’Pytorch-YOLOv4 - Minimal PyTorch implementation of YOLOv4' https://github.com/Tianxiaomo/pytorch-YOLOv4

目标检测简介:Yolov3, MobileNetv3 & EfficientDet

https://github.com/imadelh/Object-Detection_MobileNetv3-EfficientDet-YOLO

基于记忆增强的全局-局部整合网络(MEGA),只增加非常小的计算开销,就能让视频物体检测器的性能up

https://weibo.com/ttarticle/p/show?id=2309404508895014945128 https://github.com/Scalsol/mega.pytorch​​​​ https://arxiv.org/abs/2003.12063

【MantisShrimp:面向应用的目标检测框架】 https://github.com/lgvaz/mantisshrimp

《Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3》 https://gitlab.com/irafm-ai/poly-yolo

End-to-End Object Detection with Transformers https://github.com/facebookresearch/detr

【Transformers端到端目标检测DETR用户界面(100% Python)】 https://github.com/plotly/dash-detr

《DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution》 https://github.com/joe-siyuan-qiao/DetectoRS

【YOLOv4研究综述】 https://medium.com/m/global-identity?redirectUrl=https%3A%2F%2Fheartbeat.fritz.ai%2Fintroduction-to-yolov4-research-review-5b6b4bd5f255

《YOLOv5 is Here: State-of-the-Art Object Detection at 140 FPS》 https://blog.roboflow.ai/yolov5-is-here/ https://blog.roboflow.ai/how-to-train-yolov5-on-a-custom-dataset/ https://colab.research.google.com/drive/1gDZ2xcTOgR39tGGs-EZ6i3RTs16wmzZQ#scrollTo=GD9gUQpaBxNa

【DETR(Transformer目标检测)的Colab非官方实现 https://github.com/lessw2020/training-detr

AdelaiDet:开源多实例级检测应用工具箱 https://github.com/aim-uofa/AdelaiDet

【利用时序上下文进行目标检测】《Leveraging Temporal Context for Object Detection | Google AI Blog》

https://arxiv.org/abs/1912.03538 https://ai.googleblog.com/2020/06/leveraging-temporal-context-for-object.html https://www.bilibili.com/video/BV1qA411i74v?p=47

【基于yolov3的旋转目标检测】’Rotated-Yolov3 - Arbitrary oriented object detection implemented with yolov3 (attached with some tricks).' https://github.com/ming71/rotate-yolov3

【漫画内容审查条检测器】’Detecting censors with deep learning and computer vision - master' https://github.com/natethegreate/hent-AI

hloc:模块化6-DoF视觉定位工具箱,CVPR 2020室内/户外定位挑战优胜方案(Hierarchical Localization + SuperGlue)

https://github.com/cvg/Hierarchical-Localization

Yet-Another-YOLOv4-Pytorch - YOLOv4 Pytorch implementation with all freebies and specials. https://github.com/VCasecnikovs/Yet-Another-YOLOv4-Pytorch

【YOLOv4的㕛一个PyTorch实现】 https://github.com/WongKinYiu/PyTorch_YOLOv4

建筑立面图像上的门窗检测 http://jcst.ict.ac.cn/EN/10.1007/s11390-020-0253-4 https://github.com/lck1201/win_det_heatmaps

Cascaded Human-Object Interaction Recognition https://github.com/tfzhou/C-HOI

This is the official pytorch implementation for paper: BiDet: An Efficient Binarized Object Detector, which is accepted by CVPR2020.

https://github.com/ZiweiWangTHU/BiDet

[Pedestron] Pedestrian Detection: The Elephant In The Room. On ArXiv 2020 https://github.com/hasanirtiza/Pedestron

The implementation of paper "Gliding vertex on the horizontal bounding box for multi-oriented object detection". https://github.com/MingtaoFu/gliding_vertex

Camouflaged Object Detection, CVPR 2020 (Oral) https://github.com/DengPingFan/SINet

Memory Enhanced Global-Local Aggregation for Video Object Detection, CVPR2020

https://github.com/Scalsol/mega.pytorch

Source codes of "CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection" https://github.com/KiveeDong/CentripetalNet

Scale Match for Tiny Person Detection(WACV2020), Official link of the dataset https://github.com/ucas-vg/TinyBenchmark

The pytorch re-implement of the official efficientdet with SOTA performance in real time and pretrained weights. https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Implementation of our CVPR2020 paper Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection https://github.com/ggjy/HitDet.pytorch

"Detection in Crowded Scenes: One Proposal, Multiple Predictions", https://github.com/Purkialo/CrowdDet

Scale-equalizing Pyramid Convolution for object detection https://github.com/jshilong/SEPC

IterDet: Iterative Scheme for Object Detection in Crowded Environments https://github.com/saic-vul/iterdet

End-to-End Object Detection with Transformers

https://github.com/facebookresearch/detr

DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution https://github.com/joe-siyuan-qiao/DetectoRS

Implementation of 'Learning a Unified Sample Weighting Network for Object Detection' [CVPR 2020] https://github.com/caiqi/sample-weighting-network

CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax. https://github.com/FishYuLi/BalancedGroupSoftmax

Bounding box augmentations for Pytorch https://github.com/harpalsahota/bbaug

The official PyTorch implementation of paper Exploring Categorical Regularization for Domain Adaptive Object Detection (CR-DA-DET) https://github.com/Megvii-Nanjing/CR-DA-DET

code repository of “Rethinking the Route Towards Weakly Supervised Object Localization” in CVPR 2020 https://github.com/tzzcl/PSOL

AugFPN: Improving Multi-scale Feature Learning for Object Detection(CVPR 2020) https://github.com/Gus-Guo/AugFPN

HoughNet: Integrating near and long-range evidence for bottom-up object detection https://github.com/nerminsamet/houghnet

{MMDetection}: Open MMLab Detection Toolbox and Benchmark

https://github.com/dereyly/mmdet_sota

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object https://github.com/SJTU-Thinklab-Det/r3det-on-mmdetection

This project provides an implementation for "BorderDet: Border Feature for Dense Object Detection" (ECCV2020 Oral) on PyTorch. https://github.com/Megvii-BaseDetection/BorderDet

Pillar-based Object Detection for Autonomous Driving https://github.com/WangYueFt/pillar-od

PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments, https://github.com/clobotics/piou

Reducing Label Noise in Anchor-Free Object Detection https://github.com/nerminsamet/ppdet

YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud (ECCV 2018) https://github.com/maudzung/YOLO3D-YOLOv4-PyTorch

Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors https://github.com/yijingru/BBAVectors-Oriented-Object-Detection

From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting https://github.com/xhp-hust-2018-2011/SS-DCNet

CenterNet (Objects as Points) implementation in Keras and Tensorflow https://github.com/xuannianz/keras-CenterNet

LabelEnc: A New Intermediate Supervision Method for Object Detection https://github.com/megvii-model/LabelEnc

PP-YOLO: An Effective and Efficient Implementation of Object Detecto

https://github.com/PaddlePaddle/PaddleDetection

Kinematic 3D Object Detection in Monocular Video https://github.com/garrickbrazil/kinematic3d

TIDE:目标检测错误识别通用工具箱 https://github.com/dbolya/tide

【目标检测的新方法】《New Approaches to Object Detection》 https://towardsdatascience.com/new-approaches-to-object-detection-f5cbc925e00e

无锚目标检测文献/代码列表 https://github.com/XinZhangNLPR/awesome-anchor-free-object-detection

【行人检测综述】’PedSurvey - From Handcrafted to Deep Features for Pedestrian Detection: A Survey'

https://github.com/JialeCao001/PedSurvey

3D目标检测相关算法文献集,包括基于RGB图像、立体视觉、点云、融合四种方式 https://github.com/Tom-Hardy-3D-Vision-Workshop/awesome-3D-object-detection

TensorFlow实现的yolov5/yolov4/yolov3/yolo_tiny https://github.com/avBuffer/Yolov5_tf

C++ implementation of CenterNet using TensorRT and CUDA

https://github.com/JosephChenHub/CenterNet-TensorRT

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder https://github.com/microsoft/RelationNet2

YOLOv5-PyTorch:YOLOv5的PyTorch实现 https://github.com/Okery/YOLOv5-PyTorch

An Overview Of 3D Object Detection https://arxiv.org/abs/2010.15614

YOLODet-PyTorch:端到端基于pytorch框架复现yolo最新算法的目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程 https://github.com/wuzhihao7788/yolodet-pytorch

Scaled-YOLOv4: Scaling Cross Stage Partial Network https://github.com/WongKinYiu/ScaledYOLOv4

libtorch-yolov5:yolov5目标检测算法的LibTorch实现 https://github.com/yasenh/libtorch-yolov5

vedadet:PyTorch单阶段目标检测工具箱 https://github.com/Media-Smart/vedadet

UranusDet:Tensorflow旋转检测基准 https://github.com/yangxue0827/RotationDetection

CenterX:基于detectron2和centernet的目标检测网络

https://github.com/JDAI-CV/centerX

OneNet: Towards End-to-End One-Stage Object Detection

https://github.com/PeizeSun/OneNet

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

https://github.com/m4nh/loop

Line Segment Detection Using Transformers without Edges

https://www.arxiv-vanity.com/papers/2101.01909/

Object Detection Made Simpler by Eliminating Heuristic NMS https://github.com/txdet/FCOSPss

Training and fine-tuning YOLOv4 Tiny on custom object detection dataset for Taiwanese traffic' https://github.com/achen353/Taiwanese-Traffic-Object-Detection

VarifocalNet: An IoU-aware Dense Object Detector

https://github.com/hyz-xmaster/VarifocalNet

Every Pixel Matters: Center-aware Feature Alignment for Domain Adaptive Object Detector https://github.com/chengchunhsu/EveryPixelMatters

Kinematic 3D Object Detection in Monocular Video https://github.com/garrickbrazil/kinematic3d

Official code of the paper "Align Deep Features for Oriented Object Detection" https://github.com/csuhan/s2anet

Official PyTorch implementation of Deformable Grid https://github.com/fidler-lab/defgrid-release

Context-aware RCNN: a Baseline for Action Detection in Videos https://github.com/MCG-NJU/CRCNN-Action

FCOS: Fully Convolutional One-Stage Object Detection

https://github.com/VectXmy/FCOS.Pytorch

Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection https://github.com/ZHANGHeng19931123/MutualGuide

Differentiable IoU of rotated bounding boxes using Pytorch https://github.com/lilanxiao/Rotated_IoU

Deformable-Attention-for-Deformable-DETR https://github.com/Windaway/Deformable-Attention-for-Deformable-DETR

Deformable DETR: Deformable Transformers for End-to-End Object Detection. https://github.com/fundamentalvision/Deformable-DETR

Detecting Hands and Recognizing Physical Contact in the Wild, NeurIPS 2020. https://github.com/cvlab-stonybrook/ContactHands

Multi-scale Positive Sample Refinement for Few-shot Object Detection, ECCV2020 https://github.com/jiaxi-wu/MPSR

RSKDD-Net: Random Sample-based Keypoint Detector and Descriptor https://github.com/ispc-lab/RSKDD-Net

Python Framework to calibrate confidence estimates of classifiers like Neural Networks https://github.com/fabiankueppers/calibration-framework

Hier R-CNN: Instance-level Human Parts Detection and A New Benchmark

https://github.com/soeaver/Hier-R-CNN

End-to-End Object Detection with Learnable Proposal https://github.com/PeizeSun/SparseR-CNN

End-to-End Object Detection with Fully Convolutional Network https://github.com/Megvii-BaseDetection/DeFCN

OneNet: End-to-End One-Stage Object Detection

https://github.com/PeizeSun/OneNet

This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. https://github.com/Eric3911/ScaledYOLOv4

Pytorch implementation of "AutoAssign: Differentiable Label Assignment for Dense Object Detection" https://github.com/Megvii-BaseDetection/AutoAssign

This repo is an official implementation for "Fine-Grained Dynamic Head for Object Detection" (NeurIPS2020) on PyTorch framework.

https://github.com/StevenGrove/DynamicHead

CIA-SSD: Confident IoU-Aware Single Stage Object Detector From Point Cloud, AAAI 2021. https://github.com/Vegeta2020/CIA-SSD

A Tensorflow implementation of the DETR object detection architecture. https://github.com/Leonardo-Blanger/detr_tensorflow

Tensorflow implementation of DETR : Object Detection with Transformers https://github.com/Visual-Behavior/detr-tensorflow

Official implementation of Learning Point-guided Localization for Detection in Remote Sensing Images https://github.com/yf19970118/OPLD-Pytorch

Implementation of "Harmonizing Transferability and Discriminability for Adapting Object Detectors" (CVPR 2020) https://github.com/chaoqichen/HTCN

One Metric to Measure them All: Localisation Recall Precision (LRP) for Evaluating Visual Detection Tasks https://github.com/kemaloksuz/LRP-Error

SWA Object Detection https://github.com/hyz-xmaster/swa_object_detection

Comprehensive Attention Self-Distillation for Weakly-Supervised Object Detection https://github.com/DeLightCMU/CASD

This is the implementation of YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design

https://github.com/nightsnack/YOLObile

Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

https://github.com/TencentYoutuResearch/PedestrianDetection-NohNMS

Unofficial PyTorch implementation of the paper: "CenterNet3D: An Anchor free Object Detector for Autonomous Driving" https://github.com/maudzung/CenterNet3D-PyTorch

CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

https://github.com/ming71/CFC-Net

Code for Estimating and Evaluating Predictive Uncertainty In Deep 2D Object Detection. https://github.com/asharakeh/probdet

key points estimation and point instance segmentation approach for lane detection

https://github.com/koyeongmin/PINet_new

Robust and efficient post-processing for Video Object Detection

https://github.com/AlbertoSabater/Robust-and-efficient-post-processing-for-video-object-detection

Review on Object Detection Metrics: 14 object detection metrics including COCO's and PASCAL's metrics. Supporting different bounding box formats.

https://github.com/rafaelpadilla/review_object_detection_metrics

Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021. https://github.com/PerdonLiu/CSE-Autoloss

基于mmdetection 实现一些轻量级检测模型

https://github.com/ouyanghuiyu/thundernet_mmdetection

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection https://github.com/facebookresearch/unbiased-teacher

Unbiased Teacher for Semi-Supervised Object Detection https://arxiv.org/abs/2102.09480

QuarkDet lightweight object detection in PyTorch .Real-Time Object Detection on Mobile Devices.

https://github.com/shaoshengsong/quarkdet

Object detection on multiple datasets with an automatically learned unified label space.

https://github.com/xingyizhou/UniDet

2020.11 Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

代码:https://github.com/PeizeSun/SparseR-CNN 论文: https://arxiv.org/abs/2011.12450 [[attachment:Sparse R-CNN_ End-to-End Object Detection with Learnable Proposals]] 模型: https://pan.baidu.com/s/1jH4Xy3JzjHVWyzFsKt7aBw 9cmn 非anchor框和nms的目标检测技术,达到了比faster-rcnn更好的效果,速度也更快

2020.11 OneNet: Towards End-to-End One-Stage Object Detectio

知乎:https://zhuanlan.zhihu.com/p/336016003 代码:https://github.com/PeizeSun/OneNet 论文:https://arxiv.org/abs/2012.05780

2020.5 centerX (centerNet)

code: https://github.com/CPFLAME/centerX/ 说明: https://zhuanlan.zhihu.com/p/323814368

yolov5rt - YOLOv5 Runtime Stack - Yet another yolov5, with its runtime stack for libtorch, onnx and specialized accelerators

yolo5实现 https://github.com/zhiqwang/yolov5-rt-stack

NanoDet:超快轻量无锚目标检测,模型仅1.8mb,手机运行达到97FPS

https://github.com/RangiLyu/nanodet

目标检测中的一些trick汇总

https://zhuanlan.zhihu.com/p/137768226

A Comparison of Deep Learning Object Detection Models for Satellite Imagery https://arxiv.org/abs/2009.04857

Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection https://github.com/djiajunustc/Voxel-R-CNN

Localization Distillation for Object Detection https://github.com/HikariTJU/LD

TinyYOLOv2Barracuda:基于Unity Barracuda神经网络推理库的TinyYOLOv2目标检测库 https://github.com/keijiro/TinyYOLOv2Barracuda

Towards Open World Object Detection https://www.arxiv-vanity.com/papers/2103.02603 https://github.com/JosephKJ/OWOD

Data Augmentation for Object Detection via Differentiable Neural Rendering

https://github.com/Guanghan/DANR

Deep Interactive Thin Object Selection https://github.com/liewjunhao/thin-object-selection

《UP-DETR: Unsupervised Pre-training for Object Detection with Transformers》(CVPR 2021)

github.com/dddzg/up-detr

End-to-End Human Object Interaction Detection with HOI Transformer https://github.com/bbepoch/HoiTransformer

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information https://github.com/hitachi-rd-cv/qpic

《Multiple Instance Active Learning for Object Detection》(CVPR 2021) https://github.com/yuantn/MIAL

patially Consistent Representation Learning https://www.arxiv-vanity.com/papers/2103.06122

icevision:端到端目标检测框架 github.com/airctic/icevision

'YOLOv5_NCNN - 🍅 Deploy NCNN on mobile phones. Support Android and iOS. 移动端NCNN部署,支持Android与iOS。 github.com/cmdbug/YOLOv5_NCNN

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection github.com/Megvii-BaseDetection/LLA

Gen-LaneNet: a generalized and scalable approach for 3D lane detection》(ECCV 2020) github.com/yuliangguo/Pytorch_Generalized_3D_Lane_Detection

《ReDet: A Rotation-equivariant Detector for Aerial Object Detection》(CVPR 2021) github.com/csuhan/ReDet

《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) github.com/Guardian44x/Beta-R-CNN

《Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection》(ICCV 2019)

github.com/researchmm/WSOD2

《Anchor-Free Person Search》(CVPR 2021) github.com/daodaofr/AlignPS

《RESA: Recurrent Feature-Shift Aggregator for Lane Detection》(AAAI 2021)

github.com/ZJULearning/resa

《OTA: Optimal Transport Assignment for Object Detection》(CVPR 2021) github.com/Megvii-BaseDetection/OTA

《FCOS: Fully Convolutional One-Stage Object Detection》(2019)

github.com/rosinality/fcos-pytorch

USB: Universal-Scale Object Detection Benchmark github.com/shinya7y/UniverseNet

Efficient DETR: Improving End-to-End Object Detector with Dense Prior https://www.arxiv-vanity.com/papers/2104.01318

SI-Score: An image dataset for fine-grained analysis of robustness to object location, rotation and size github.com/google-research/si-score

Robust and Accurate Object Detection via Adversarial Learning github.com/google/automl/blob/master/efficientdet/Det-AdvProp.md

视觉小目标检测文献列表 github.com/ispc-lab/SmallObjectDetectionList

YOLOv4模型训练教程

github.com/jkjung-avt/yolov4_crowdhuman

yolov5_prune - yolov5剪枝,支持v2,v3,v4版本的yolov5 github.com/ZJU-lishuang/yolov5_prune

Dynamic Anchor Learning for Arbitrary-Oriented Object Detection github.com/ming71/DAL

Adaptive Class Suppression Loss for Long-Tail Object Detection (CVPR 2021) github.com/CASIA-IVA-Lab/ACSL

MDETR -- Modulated Detection for End-to-End Multi-Modal Understanding github.com/ashkamath/mdetr

PAFNet: An Efficient Anchor-Free Object Detector Guidance https://www.arxiv-vanity.com/papers/2104.13534/ https://github.com/PaddlePaddle/PaddleDetection

YOLTv4:更好、更快,改进的航空/卫星图像大规模目标检测 github.com/avanetten/yoltv4

lacmus:用神经网络在森林里搜索走失人员 github.com/lacmus-foundation/lacmus

《Concealed Object Detection》(2021) github.com/GewelsJI/SINet-V2

《Tiny Object Detection in Aerial Images》(ICPR 2021)

github.com/jwwangchn/AI-TOD

《Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection》(2020) github.com/ZiningWang/Inferring-Spatial-Uncertainty-in-Object-Detection

《PED: DETR for Crowd Pedestrian Detection》(2021) github.com/Hatmm/PED-DETR-for-Pedestrian-Detection

《Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection》(2020) github.com/stanfordmlgroup/blm

ee-fastapi: 基于Google Earth Engine的洪水检测系统 github.com/csaybar/ee-fastapi

Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset github.com/AlirezaShamsoshoara/Fire-Detection-UAV-Aerial-Image-Classification-Segmentation-UnmannedAerialVehicle

DETReg: Unsupervised Pretraining with Region Priors for Object Detection https://www.arxiv-vanity.com/papers/2106.04550

《Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection》(CVPR 2021) github.com/tztztztztz/eqlv2

GAIA-det:目标检测迁移学习系统 github.com/GAIA-vision/GAIA-det

flexible-yolov5:更可读、使用更灵活的YOLOv5重构版】’flexible-yolov5 - More readable and flexible yolov5 with more backbone(resnet, shufflenet, moblienet, efficientnet, hrnet) and (cbam,dcn and so on), github.com/yl305237731/flexible-yolov5

Yolov5:YOLOV5的TensorFlow2高效实现 github.com/LongxingTan/Yolov5

Inverting and Understanding Object Detectors github.com/Caoang327/vis_det

detection_template - 一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络 github.com/misads/detection_template

YOLOX: Exceeding YOLO Series in 2021 github.com/Megvii-BaseDetection/YOLOX

Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数

github.com/Sharpiless/Yolov5-deepsort-inference

《CondLaneNet: a Top-to-down Lane Detection Framework Based on ConditionalConvolution》(2021) github.com/aliyun/conditional-lane-detection

用ncnn+opencv实现的YOLOX目标检测 #TODO

github.com/FeiGeChuanShu/ncnn-android-yolox

YOLOv5 汉化版 github.com/wudashuo/yolov5

《CBNetV2: A Composite Backbone Network Architecture for Object Detection github.com/VDIGPKU/CBNetV2

JDet:基于Jittor的目标检测框架 github.com/Jittor/JDet

OBBDetection:基于MMdetection的目标检测库

github.com/jbwang1997/OBBDetection

Oriented R-CNN for Object Detection https://arxiv.org/abs/2108.05699

TOOD: Task-aligned One-stage Object Detection github.com/fcjian/TOOD

AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection github.com/zongdai/AutoShape

Rotate-Yolov5:基于Ultralytics/yolov5的旋转目标检测

github.com/XinzeLee/RotateObjectDetection

Pix2seq: A Language Modeling Framework for Object Detection https://arxiv.org/abs/2109.10852

《Localizing Objects with Self-Supervised Transformers and no Labels》 github.com/valeoai/LOST

ViDT: An Efficient and Effective Fully Transformer-based Object Detector github.com/naver-ai/vidt

《Generalized Out-of-Distribution Detection: A Survey》 github.com/Jingkang50/OODSurvey

Sparse DETR: Efficient End-to-End Object Detection with Learnable Sparsity github.com/kakaobrain/sparse-detr

ONNX-ImageNet-1K-Object-Detector - Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. github.com/ibaiGorordo/ONNX-ImageNet-1K-Object-Detector

AdelaiDet:开源多实例级检测应用工具箱 github.com/aim-uofa/AdelaiDet

用商业卫星图像和深度学习探测海洋废弃物 github.com/NASA-IMPACT/marine_debris_ML

YOLOv5-Lite:方便部署的YOLOv5轻量高性能版 github.com/ppogg/YOLOv5-Lite

miemiedetection:基于YOLOX进行二次开发的PyTorch个人检测库,支持YOLOX、PPYOLO、PPYOLOv2等算法 github.com/miemie2013/miemiedetection

PyTorch 实现的YOLTv5卫星/航拍图像目标检测 github.com/avanetten/yoltv5

R-YOLOv4 - a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection. github.com/kunnnnethan/R-YOLOv4

YOLOv7 - Framework Beyond Detection - YOLO with Transformers and Instance Segmentation, with TensorRT acceleration!

github.com/jinfagang/yolov7

yolox-opencv-dnn - 使用OpenCV部署YOLOX,支持YOLOX-S、YOLOX-M、YOLOX-L、YOLOX-X、YOLOX-Darknet53五种结构,包含C++和Python两种版本的程序 github.com/hpc203/yolox-opencv-dnn

MMRotate:基于 PyTorch 的旋转框检测的开源工具箱

github.com/open-mmlab/mmrotate

nnDetection:医学图像3D目标检测框架 github.com/MIC-DKFZ/nnDetection

Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection https://arxiv.org/abs/2202.06934

SAHI:面向大规模目标检测(特别是小目标)和实例分割的轻量视觉库 github.com/obss/sahi

NanoDet-Plus:超快轻量目标检测 github.com/RangiLyu/nanodet https://zhuanlan.zhihu.com/p/449912627

D²ETR: Decoder-Only DETR with Computationally Efficient Cross-Scale Attention https://arxiv.org/abs/2203.00860

yolox-opencv-dnn - 使用OpenCV部署YOLOX,支持YOLOX-S、YOLOX-M、YOLOX-L、YOLOX-X、YOLOX-Darknet53五种结构,包含C++和Python两种版本的程序 github.com/hpc203/yolox-opencv-dnn

Awesome-3D-Object-Detection:3D目标检测相关研究大列表 github.com/TianhaoFu/Awesome-3D-Object-Detection

Keras实例教程:视觉Transformer目标检测 https://keras.io/examples/vision/object_detection_using_vision_transformer/

YOLOX-OBB - YOLOX in DOTA with KLD loss. (Oriented Object Detection)(Rotated BBox)基于YOLOX的旋转目标检测 github.com/buzhidaoshenme/YOLOX-OBB

ONNX Object Localization Network:ONNX类不可知目标定位网络模型 github.com/ibaiGorordo/ONNX-Object-Localization-Network

Pix2Seq:一种新的目标检测语言接口 https://ai.googleblog.com/2022/04/pix2seq-new-language-interface-for.html

'YOLOv6: a single-stage object detection framework dedicated to industrial application.' by Meituan GitHub: github.com/meituan/YOLOv6

'ONNX YOLOv6 Object Detection - Python scripts performing object detection using the YOLOv6 model in ONNX.' by Ibai Gorordo GitHub: github.com/ibaiGorordo/ONNX-YOLOv6-Object-Detection

【FastestDet:轻量无锚目标检测框架,参数仅为250K,与最快速算法相比时间消耗减少30%】’FastestDet - A newly designed ultra lightweight anchor free target detection algorithm, weight only 250K parameters, reduces the time consumption by 30% compared with yolo-fastest, and the post-processing is simpler' by xuehao.ma GitHub: github.com/dog-qiuqiu/FastestDet

【2022目标检测前沿】《Object Detection State of the Art 2022》by Pedro Azevedo medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003

[CV]《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors》C Wang, A Bochkovskiy, H M Liao [Academia Sinica] (2022) https://arxiv.org/abs/2207.02696

'yolov7-pytorch - YOLOV7目标检测模型的PyTorch实现' by Bubbliiiing GitHub: github.com/bubbliiiing/yolov7-pytorch

【YOLO目标检测系统各种实现及应用项目大列表】’Awesome-YOLO-Object-Detection - A collection of some awesome YOLO object detection series projects.' by dotnet-rs-py GitHub: github.com/dotnet-rs-py/awesome-yolo-object-detection

'ONNX YOLOv7 Object Detection - Python scripts performing object detection using the YOLOv7 model in ONNX.' by Ibai Gorordo GitHub: github.com/ibaiGorordo/ONNX-YOLOv7-Object-Detection

'yolov7-opencv-onnxrun-cpp-py - 分别使用OpenCV、ONNXRuntime部署YOLOV7目标检测,一共包含14个onnx模型,包含C++和Python两个版本的程序' by hpc203 GitHub: github.com/hpc203/yolov7-opencv-onnxrun-cpp-py

【YOLOv5-Lite:方便部署的YOLOv5轻量高性能版】’YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~' by ppogg GitHub: https:// github.com/ppogg/YOLOv5-Lite

[CV]《Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild》X Du, X Wang, G Gozum, Y Li [University of Wisconsin-Madison & Microsoft Research] (2022) https://arxiv.org/abs/2203.03800

【YOLOAir:基于PyTorch的一系列YOLO检测算法组合工具箱。用来组合不同模块构建不同网络】'YOLOAir:Including YOLOv5, YOLOv7, Transformer, YOLOX, YOLOR and other networks... Support to improve backbone, head, loss, IoU, NMS...The original version was created based on YOLOv5' by iscyy GitHub: github.com/iscyy/yoloair

'YOLOSeries:基于PaddleDetection的YOLO系列模型库,支持PP-YOLOE,YOLOv3,YOLOX,YOLOv5,MT-YOLOv6,YOLOv7等模型' by Feng Ni GitHub: github.com/nemonameless/PaddleDetection_YOLOSeries

【YOLOv7目标自动模糊】’YOLOv7 Object Blurring Using PyTorch and OpenCV' by Muhammad Rizwan Munawar GitHub: github.com/RizwanMunawar/yolov7-object-blurring

[CV]《Detecting the unknown in Object Detection》D Fontanel, M Tarantino, F Cermelli, B Caputo [Politecnico di Torino] (2022) https://arxiv.org/abs/2208.11641

[CV]《A Survey of Deep Learning for Low-Shot Object Detection》Q Huang, H Zhang, M Xue, J Song, M Song [Zhejiang University] (2021) https://arxiv.org/abs/2112.02814

【Change Detection Laboratory:用 PyTorch 开发的基于深度学习遥感影像变化检测项目,可作为算法开发、训练框架,也可作为基线测试平台】'Change Detection Laboratory - Yet another repository for developing and benchmarking deep learning-based change detection methods.' by Lin Manhui GitHub: github.com/Bobholamovic/CDLab

【detrex:基于Transformer的检测算法工具包】’detrex - IDEA Open Source Toolbox for Transformer Based Object Detection Algorithms' by IDEA-Research GitHub: github.com/IDEA-Research/detrex

'mmyolo - OpenMMLab YOLO series toolbox and benchmark' by OpenMMLab GitHub: github.com/open-mmlab/mmyolo

[CV]《SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery》J Zhang, J Lei, W Xie, Z Fang, Y Li, Q Du [Xidian University & Simon Fraser University & Mississippi State University] (2022) https://arxiv.org/abs/2209.13351

【PyTorch Out-of-Distribution Detection:PyTorch分布外检测(OOD)研究库】’PyTorch Out-of-Distribution Detection - PyTorch-based library to accelerate research in Out-of-Distribution (OOD) Detection’ by kkirchheim GitHub: github.com/kkirchheim/pytorch-ood

'Easy Object Detection with Transformers: Simple Implementation of Pix2Seq model in PyTorch' by Moein Shariatnia GitHub: github.com/moein-shariatnia/Pix2Seq

[CV]《DiffusionDet: Diffusion Model for Object Detection》S Chen, P Sun, Y Song, P Luo [The University of Hong Kong & Tencent AI Lab] (2022) https://arxiv.org/abs/2211.09788

【Roboflow 100: 富多域目标检测基准】'Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark ' by Roboflow GitHub: github.com/roboflow-ai/roboflow-100-benchmark

【开集目标检测相关文献资源列表】’Awesome-Open-Vocabulary-Object-Detection' by YimingCui GitHub: github.com/YimingCuiCuiCui/awesome-open-vocabulary-object-detection

'Yolov8_Efficient - Simple and efficient use for Ultralytics yolov8' Xu Lin GitHub: github.com/isLinXu/YOLOv8_Efficient

【Ultralytics YOLOv8 :在以前 YOLO 版本的成功基础上,引入了新的功能和改进,进一步提升了性能和灵活性】'Ultralytics YOLOv8 - a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility' Ultralytics GitHub: github.com/ultralytics/ultralytics

【AdelaiDet:面向多实例级检测和识别任务的开源工具箱】'AdelaiDet - an open source toolbox for multiple instance-level detection and recognition tasks.' Advanced Intelligent Machines (AIM) GitHub: github.com/aim-uofa/AdelaiDet

【深度学习CV领域模型加速部署案例,仓库实现的cuda c支持多batch图像预处理、推理、decode、NMS】’TensorRT-Alpha - supports YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR and so on. It implements CUDA C++ accelerated deployment models. CUDA IS ALL YOU NEED. Best Wish!' FeiYull GitHub: github.com/FeiYull/tensorrt-alpha

【Globox:目标检测工具箱】’Globox — Object Detection Toolbox - A package to read and convert object detection databases (COCO, YOLO, PascalVOC, LabelMe, CVAT, OpenImage, ...) and evaluate them with COCO and PascalVOC metrics.' Louis Lac GitHub: github.com/laclouis5/globox

'awesome-yolov8-models - Easy-to-use finetuned YOLOv8 models.' ABYZOU GitHub: github.com/keremberke/awesome-yolov8-models

提出了第一个实时端到端目标检测器RT-DETR,采用了先进的方法,实现了比YOLO检测器更准确和更快速的性能。

https://arxiv.org/abs/2304.08069 [CV]《DETRs Beat YOLOs on Real-time Object Detection》W Lv, S Xu, Y Zhao, G Wang, J Wei, C Cui, Y Du, Q Dang, Y Liu [Baidu Inc] (2023)

【YOLO-NAS:Deci发布的一款新的目标检测模型,采用了其专有的神经架构搜索技术AutoNAC™生成。该模型在准确性和速度性能方面都表现优异,超越了其他模型,如YOLOv5、YOLOv6、YOLOv7和YOLOv8等。YOLO-NAS具有更快的实时目标检测能力,性能更具生产力。除了具有数据和硬件感知能力,AutoNAC™引擎还考虑了推理栈中的其他组件,包括编译器和量化。YOLO-NAS的架构采用量化感知块和选择性量化,可获得优化性能。该模型可在SuperGradients上进行训练和微调,并提供了预训练权重】'YOLO-NAS - A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology' by deci.ai GitHub: github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md

很漂亮的YOLOv8结构图 src: github.com/open-mmlab/mmyolo/blob/main/docs/en/recommended_topics/algorithm_descriptions/yolov8_description.md

【开放词表目标检测相关论文、数据集和资源列表】’Awesome-Open-Vocabulary-Object-Detection - A curated list of papers, datasets and resources pertaining to open vocabulary object detection.' kario GitHub: github.com/witnessai/Awesome-Open-Vocabulary-Object-Detection

【RT-DETR:实时端到端目标检测器】'RT-DETR - official rtdetr, official rt-detr, rtdetr, rt-detr, Real-Time DEtection TRansformer, DETRs Beat YOLOs on Real-time Object Detection' Wenyu GitHub: github.com/lyuwenyu/RT-DETR