-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path221-maximal-square.cpp
47 lines (41 loc) · 1.79 KB
/
221-maximal-square.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Title: Maximal Square
// Description:
// Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
// Link: https://leetcode.com/problems/maximal-square/
// Time complexity: O(m*n)
// Space complexity: O(m*n)
class Solution {
public:
int maximalSquare(std::vector<std::vector<char>> &matrix) {
if (matrix.size() == 0 || matrix[0].size() == 0) return 0;
const std::size_t M = matrix.size();
const std::size_t N = matrix[0].size();
// keep track of the side of the largest square
std::size_t maxSide = 0;
// dp[i][j] = side of the largest square containing only 1's with (i, j) as the bottom-right corner
std::vector<std::vector<std::size_t>> dp(M, std::vector<std::size_t>(N)); {
for (std::size_t i = 0; i != M; ++i) {
dp[i][0] = (matrix[i][0] == '1' ? 1 : 0);
maxSide = std::max(dp[i][0], maxSide);
}
for (std::size_t j = 0; j != N; ++j) {
dp[0][j] = (matrix[0][j] == '1' ? 1 : 0);
maxSide = std::max(dp[0][j], maxSide);
}
}
/*
dp[i][j] = {
min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1 if matrix[i][j] == '1'
0 if matrix[i][j] != '1'
} for i > 0, j > 0
*/
for (std::size_t i = 1; i < M; ++i) {
for (std::size_t j = 1; j < N; ++j) {
dp[i][j] = (matrix[i][j] == '1' ? std::min({ dp[i-1][j-1], dp[i][j-1], dp[i-1][j] }) + 1 : 0);
maxSide = std::max(dp[i][j], maxSide);
}
}
// return the max square area
return maxSide * maxSide;
}
};