-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path509-fibonacci-number.cpp
50 lines (43 loc) · 1.43 KB
/
509-fibonacci-number.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// Title: Fibonacci Number
// Description:
// The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence,
// such that each number is the sum of the two preceding ones, starting from 0 and 1.
// That is,
// F(0) = 0, F(1) = 1
// F(n) = F(n - 1) + F(n - 2), for n > 1.
// Given n, calculate F(n).
// Link: https://leetcode.com/problems/fibonacci-number/
// Time complexity: O(log(n))
// Space complexity: O(log(n))
class Solution {
public:
typedef std::vector<std::vector<int>> mat2;
// Matrix Exponentiation method:
// https://math.stackexchange.com/a/784722
int fib(int n) {
const mat2 A = {
{ 0, 1 },
{ 1, 1 },
};
return matPow(A, n)[0][1];
}
// Exponentiation by squaring:
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
mat2 matPow(const mat2 &m, int n) {
const mat2 I = {
{ 1, 0 },
{ 0, 1 },
};
if (n == 0) return I;
return matMul(
matPow(matMul(m, m), n / 2),
n % 2 == 0 ? I : m
);
}
mat2 matMul(const mat2 &a, const mat2 &b) {
return {
{ a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1] },
{ a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1] },
};
}
};