forked from MedicineBiology-AI/EEG-DTI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_yamanashi.py
456 lines (377 loc) · 16.5 KB
/
main_yamanashi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from __future__ import division
from __future__ import print_function
from operator import itemgetter
import time
import os
import tensorflow as tf
import numpy as np
import scipy.sparse as sp
import sys
from sklearn import metrics
from decagon.deep.optimizer import DecagonOptimizer
from decagon.deep.model import DecagonModel
from decagon.deep.minibatch import EdgeMinibatchIterator
from decagon.utility import rank_metrics, preprocessing
from decagon.utility import loadData_enzyme
# Train on CPU (hide GPU) due to memory constraints
os.environ['CUDA_VISIBLE_DEVICES'] = "6"
import datetime
nowTime=datetime.datetime.now().strftime('%Y-%m-%d %H-%M-%S')
class Logger(object):
def __init__(self, fileN="Default.log"):
self.terminal = sys.stdout
self.log = open(fileN, "a")
def write(self, message):
self.terminal.write(message)
self.terminal.flush()
self.log.write(message)
self.log.flush()
def flush(self):
pass
# You can change the data_set name eg.nr gpcr enzyme ic....
data_set = 'nr'
use_feat = 0
thresholds_d = 0.5
thresholds_p = 0.5
print('data_set',data_set)
print('thresholds_d',thresholds_d)
print('thresholds_p',thresholds_p)
os.makedirs('./log/'+data_set+str(nowTime))
sys.stdout = Logger('./log/'+data_set+str(nowTime)+'/terminal.txt')
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('neg_sample_size', 1, 'Negative sample size.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 100, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 64, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 64, 'Number of units in hidden layer 2.')
flags.DEFINE_float('weight_decay', 0, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_float('dropout', 0.1, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('max_margin', 0.1, 'Max margin parameter in hinge loss')
flags.DEFINE_integer('batch_size', 32, 'minibatch size.')
flags.DEFINE_boolean('bias', True, 'Bias term.')
#01
AUROC_01_list = []
AUPR_01_list = []
APatK_01_list = []
ACC_01_list = []
F1_01_list = []
MSE_01_list = []
MAE_01_list = []
#10
AUROC_10_list = []
AUPR_10_list = []
APatK_10_list = []
ACC_10_list = []
F1_10_list = []
MSE_10_list = []
MAE_10_list = []
# About Drug
drug_drug_path = './DTI_data/'+data_set+'/'+data_set+'_simmat_dc.txt'
# About Protein
protein_drug_path = './DTI_data/'+data_set+'/'+data_set+'_admat_dgc.txt'
protein_protein_path = './DTI_data/'+data_set+'/'+data_set+'_simmat_dg.txt'
drug_proten_interactions, protein_drug_interactions, interactions_margin = loadData_enzyme.load_protein_drug_interactions(margin=0.001, path=protein_drug_path)
# Drug-Drug
Drug_Drug_sim_adj = loadData_enzyme.load_adj_by_p_valuethreshold(toone=1, threshold=thresholds_d, sim_path=drug_drug_path)
# Protein-Protein
Protein_Protein_sim_adj = loadData_enzyme.load_adj_by_p_valuethreshold(toone=1, threshold=thresholds_p,sim_path=protein_protein_path)
print('shape:', drug_proten_interactions.shape, Protein_Protein_sim_adj.shape, Drug_Drug_sim_adj.shape)
for seed in range(10):
print('Current seed is ',seed)
val_test_size = 0.1
def get_accuracy_scores(edges_pos, edges_neg, edge_type):
feed_dict.update({placeholders['dropout']: 0})
feed_dict.update({placeholders['batch_edge_type_idx']: minibatch.edge_type2idx[edge_type]})
feed_dict.update({placeholders['batch_row_edge_type']: edge_type[0]})
feed_dict.update({placeholders['batch_col_edge_type']: edge_type[1]})
rec = sess.run(opt.predictions, feed_dict=feed_dict)
def sigmoid(x):
return 1. / (1 + np.exp(-x))
# Predict on test set of edges
preds = []
actual = []
predicted = []
edge_ind = 0
# pos
for u, v in edges_pos[edge_type[:2]][edge_type[2]]:
score = sigmoid(rec[u, v])
preds.append(score)
assert adj_mats_orig[edge_type[:2]][edge_type[2]][u,v] == 1, 'Problem 1'
actual.append(edge_ind)
predicted.append((score, edge_ind))
edge_ind += 1
preds_neg = []
# neg
for u, v in edges_neg[edge_type[:2]][edge_type[2]]:
score = sigmoid(rec[u, v])
preds_neg.append(score)
assert adj_mats_orig[edge_type[:2]][edge_type[2]][u,v] == 0, 'Problem 0'
predicted.append((score, edge_ind))
edge_ind += 1
preds_all = np.hstack([preds, preds_neg])
preds_all = np.nan_to_num(preds_all)
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
predicted = list(zip(*sorted(predicted, reverse=True, key=itemgetter(0))))[1]
# evatalution.....
roc_sc = metrics.roc_auc_score(labels_all, preds_all)
aupr_sc = metrics.average_precision_score(labels_all, preds_all)
apk_sc = rank_metrics.apk(actual, predicted, k=50)
return roc_sc, aupr_sc, apk_sc
def get_final_accuracy_scores(edges_pos, edges_neg, edge_type):
feed_dict.update({placeholders['dropout']: 0})
feed_dict.update({placeholders['batch_edge_type_idx']: minibatch.edge_type2idx[edge_type]})
feed_dict.update({placeholders['batch_row_edge_type']: edge_type[0]})
feed_dict.update({placeholders['batch_col_edge_type']: edge_type[1]})
rec = sess.run(opt.predictions, feed_dict=feed_dict)
def sigmoid(x):
return 1. / (1 + np.exp(-x))
# Predict on test set of edges
preds = []
actual = []
predicted = []
edge_ind = 0
# pos
for u, v in edges_pos[edge_type[:2]][edge_type[2]]:
score = sigmoid(rec[u, v])
preds.append(score)
assert adj_mats_orig[edge_type[:2]][edge_type[2]][u,v] == 1, 'Problem 1'
actual.append(edge_ind)
predicted.append((score, edge_ind))
edge_ind += 1
preds_neg = []
# neg
for u, v in edges_neg[edge_type[:2]][edge_type[2]]:
score = sigmoid(rec[u, v])
preds_neg.append(score)
assert adj_mats_orig[edge_type[:2]][edge_type[2]][u,v] == 0, 'Problem 0'
predicted.append((score, edge_ind))
edge_ind += 1
# hstac
preds_all = np.hstack([preds, preds_neg])
preds_all = np.nan_to_num(preds_all)
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
predicted = list(zip(*sorted(predicted, reverse=True, key=itemgetter(0))))[1]
# evatalution.....
roc_sc = metrics.roc_auc_score(labels_all, preds_all)
aupr_sc = metrics.average_precision_score(labels_all, preds_all)
apk_sc = rank_metrics.apk(actual, predicted, k=10)
FPR, TPR, thresholds = metrics.roc_curve(labels_all, preds_all)
precision,recall ,_= metrics.precision_recall_curve(labels_all, preds_all)
mse = metrics.mean_squared_error(labels_all, preds_all)
mae = metrics.median_absolute_error(labels_all, preds_all)
r2 = metrics.r2_score(labels_all, preds_all)
np.savetxt('./log/'+data_set+str(nowTime)+'/'+str(seed)+''+str(edge_type)+'_'+str(nowTime)+'_true.txt',labels_all,fmt='%d')
np.savetxt('./log/'+data_set+str(nowTime)+'/'+str(seed)+''+str(edge_type)+'_'+str(nowTime)+'_pred.txt', preds_all,fmt='%.3f')
preds_all[preds_all>=0.5] = 1
preds_all[preds_all< 0.5] = 0
acc = metrics.accuracy_score(labels_all, preds_all)
# metrics.accuracy_score(labels_all,preds_all)
f1 = metrics.f1_score(labels_all, preds_all, average='macro')
return FPR, TPR, roc_sc, \
precision,recall,aupr_sc, \
apk_sc , thresholds ,mse, mae,r2,acc,f1
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int64, name='batch'),
'batch_edge_type_idx': tf.placeholder(tf.int64, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int64, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int64, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int64),
'dropout': tf.placeholder_with_default(0., shape=()),
}
placeholders.update({
'adj_mats_%d,%d,%d' % (i, j, k): tf.sparse_placeholder(tf.float32)
for i, j in edge_types for k in range(edge_types[i,j])})
placeholders.update({
'feat_%d' % i: tf.sparse_placeholder(tf.float32) for i, _ in edge_types})
return placeholders
# data representation
# 0 for protein / 1 for drug / 2 for side-effect / 3 for disease
adj_mats_orig = {
(0, 0): [Protein_Protein_sim_adj,Protein_Protein_sim_adj],#type1
(0, 1): [protein_drug_interactions],#type2
(1, 0): [drug_proten_interactions],
(1, 1): [Drug_Drug_sim_adj,Drug_Drug_sim_adj],#type3
}
protein_degrees = np.array(Protein_Protein_sim_adj.sum(axis=0)).squeeze()
drug_degrees = np.array(Drug_Drug_sim_adj.sum(axis=0)).squeeze()
degrees = {
0: [protein_degrees, protein_degrees],
1: [drug_degrees,drug_degrees],
}
# # featureless
protein_feat = sp.identity(Protein_Protein_sim_adj.shape[0])
protein_nonzero_feat, protein_num_feat = protein_feat.shape
protein_feat = preprocessing.sparse_to_tuple(protein_feat.tocoo())
drug_feat = sp.identity(Drug_Drug_sim_adj.shape[0])
drug_nonzero_feat, drug_num_feat = drug_feat.shape
drug_feat = preprocessing.sparse_to_tuple(drug_feat.tocoo())
num_feat = {
0: protein_num_feat,
1: drug_num_feat,
}
nonzero_feat = {
0: protein_nonzero_feat,
1: drug_nonzero_feat,
}
feat = {
0: protein_feat,
1: drug_feat,
}
# edge_type2dim = {k: [adj.shape for adj in adjs] for k, adjs in adj_mats_orig.items()}
edge_type2dim = {
(0, 0): [(Protein_Protein_sim_adj.shape[0], Protein_Protein_sim_adj.shape[0])],
(0, 1): [(Protein_Protein_sim_adj.shape[0], Drug_Drug_sim_adj.shape[0])],
(1, 0): [(Drug_Drug_sim_adj.shape[0], Protein_Protein_sim_adj.shape[0])],
(1, 1): [(Drug_Drug_sim_adj.shape[0],Drug_Drug_sim_adj.shape[0])],
}
edge_type2decoder = {
(0, 0): 'innerproduct',
(0, 1): 'innerproduct',
(1, 0): 'innerproduct',
(1, 1): 'innerproduct',
}
# edge_types = {k: len(v) for k, v in adj_mats_orig.items()}
edge_types = {
(0, 0): 2,
(0, 1): 1,
(1, 0): 1,
(1, 1): 2,
}
#
num_edge_types = sum(edge_types.values())
print("Edge types:", "%d" % num_edge_types)
# Important -- Do not evaluate/print validation performance every iteration as it can take
# substantial amount of time
PRINT_PROGRESS_EVERY = 20
print("Defining placeholders")
placeholders = construct_placeholders(edge_types)
print("Create minibatch iterator")
minibatch = EdgeMinibatchIterator(
adj_mats=adj_mats_orig,
seed=seed,
feat=feat,
edge_types=edge_types,
data_set=data_set,
batch_size=FLAGS.batch_size,
val_test_size=val_test_size,
)
print("Create model")
model = DecagonModel(
data_set = data_set,
placeholders=placeholders,
num_feat=num_feat,
nonzero_feat=nonzero_feat,
edge_types=edge_types,
decoders=edge_type2decoder,
)
print("Initialize session")
sess = tf.Session()
with sess.as_default():
print("Create optimizer")
with tf.name_scope('optimizer'):
opt = DecagonOptimizer(
embeddings=model.embeddings,
latent_inters=model.latent_inters,
latent_varies=model.latent_varies,
degrees=degrees,
edge_types=edge_types,
edge_type2dim=edge_type2dim,
placeholders=placeholders,
batch_size=FLAGS.batch_size,
margin=FLAGS.max_margin
)
# sess = tf.Session()
sess.run(tf.global_variables_initializer())
feed_dict = {}
print("Train model")
for epoch in range(FLAGS.epochs):
minibatch.shuffle()
itr = 0
while not minibatch.end():
# Construct feed dictionary
feed_dict = minibatch.next_minibatch_feed_dict(placeholders=placeholders)
feed_dict = minibatch.update_feed_dict(
feed_dict=feed_dict,
dropout=FLAGS.dropout,
placeholders=placeholders)
t = time.time()
outs = sess.run([opt.opt_op, opt.cost, opt.batch_edge_type_idx], feed_dict=feed_dict)
train_cost = outs[1]
batch_edge_type = outs[2]
if itr % PRINT_PROGRESS_EVERY == 0:
val_auc, val_auprc, val_apk = get_accuracy_scores(
minibatch.val_edges, minibatch.val_edges_false,
minibatch.idx2edge_type[minibatch.current_edge_type_idx])
print("Epoch:", "%04d" % (epoch + 1), "Iter:", "%04d" % (itr + 1), "Edge:", "%04d" % batch_edge_type,
"train_loss=", "{:.5f}".format(train_cost),
"val_roc=", "{:.5f}".format(val_auc), "val_auprc=", "{:.5f}".format(val_auprc),
"val_apk=", "{:.5f}".format(val_apk), "time=", "{:.5f}".format(time.time() - t))
itr += 1
print("Optimization finished!")
for et in range(num_edge_types):
print('et=',et)
FPR, TPR, roc_score, \
precision, recall, auprc_score, \
apk_score, \
thresholds, mse, mae, r2 ,acc, f1= get_final_accuracy_scores(
minibatch.test_edges, minibatch.test_edges_false, minibatch.idx2edge_type[et])
# if et==1 or et==2:
if et==0:
AUROC_01_list.append(roc_score)
AUPR_01_list.append(auprc_score)
APatK_01_list.append(apk_score)
ACC_01_list.append(acc)
F1_01_list.append(f1)
MSE_01_list.append(mse)
MAE_01_list.append(mae)
if et==1:
AUROC_10_list.append(roc_score)
AUPR_10_list.append(auprc_score)
APatK_10_list.append(apk_score)
ACC_10_list.append(acc)
F1_10_list.append(f1)
MSE_10_list.append(mse)
MAE_10_list.append(mae)
print("Edge type=", "[%02d, %02d, %02d]" % minibatch.idx2edge_type[et])
print("Edge type:", "%04d" % et, "Test AUROC score", "{:.5f}".format(roc_score))
print("Edge type:", "%04d" % et, "Test AUPRC score", "{:.5f}".format(auprc_score))
print("Edge type:", "%04d" % et, "Test AP@k score", "{:.5f}".format(apk_score))
print("Edge type:", "%04d" % et, "Test acc score", "{:.5f}".format(acc))
print("Edge type:", "%04d" % et, "Test f1 score", "{:.5f}".format(f1))
print("Edge type:", "%04d" % et, "Test mse score", "{:.5f}".format(mse))
print("Edge type:", "%04d" % et, "Test mae score", "{:.5f}".format(mae))
print("Edge type:", "%04d" % et, "Test r2 score", "{:.5f}".format(r2))
print()
print('10-Flod-cross-val-result')
print('-----01------')
print('AUROC_01_list',AUROC_01_list)
print('AUPR_01_list',AUPR_01_list)
print('APatK_01_list',APatK_01_list)
print('ACC_01_list',ACC_01_list)
print('F1_01_list',F1_01_list)
print('MSE_01_list',MSE_01_list)
print('MAE_01_list',MAE_01_list)
print('AVG_AUROC_01_list',np.mean(AUROC_01_list))
print('AVG_AUPR_01_list',np.mean(AUPR_01_list))
print('AVG_APatK_01_list',np.mean(APatK_01_list))
print('AVG_ACC_01_list',np.mean(ACC_01_list))
print('AVG_F1_01_list',np.mean(F1_01_list))
print('AVG_MSE_01_list',np.mean(MSE_01_list))
print('AVG_MAE_01_list',np.mean(MAE_01_list))
print('-----10------')
print('AUROC_10_list',AUROC_10_list)
print('AUPR_10_list',AUPR_10_list)
print('APatK_10_list',APatK_10_list)
print('ACC_10_list',ACC_10_list)
print('F1_10_list',F1_10_list)
print('MSE_10_list',MSE_10_list)
print('MAE_10_list',MAE_10_list)
print('AVG_AUROC_10_list',np.mean(AUROC_10_list))
print('AVG_AUPR_10_list',np.mean(AUPR_10_list))
print('AVG_APatK_10_list',np.mean(APatK_10_list))
print('AVG_ACC_10_list',np.mean(ACC_10_list))
print('AVG_F1_10_list',np.mean(F1_10_list))
print('AVG_MSE_10_list',np.mean(MSE_10_list))
print('AVG_MAE_10_list',np.mean(MAE_10_list))