-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
66 lines (58 loc) · 2.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 定义模型
class FaceRecognitionModel(nn.Module):
def __init__(self):
super(FaceRecognitionModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=7)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32 * 56 * 56, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, num_classes) # num_classes是类别数
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = x.view(-1, 32 * 56 * 56)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
])
train_data = datasets.ImageFolder('path_to_train_data', transform=transform)
val_data = datasets.ImageFolder('path_to_val_data', transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
val_loader = DataLoader(val_data, batch_size=32, shuffle=False)
# 实例化模型、定义损失函数和优化器
model = FaceRecognitionModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')
# 验证模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in val_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Validation Accuracy: {100 * correct / total}%')