-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
157 lines (127 loc) · 7.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# was stanza.models.pos.model
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence, pack_sequence, PackedSequence
from biaffine import BiaffineScorer
from hlstm import HighwayLSTM
from dropout import WordDropout
from char_model import CharacterModel
class Tagger(nn.Module):
def __init__(self, args, vocab, emb_matrix=None):
super().__init__()
self.vocab = vocab
self.args = args
self.use_pretrained = emb_matrix is not None
self.use_char = args['char_emb_dim'] > 0
self.use_word = args['word_emb_dim'] > 0
self.share_hid = args['pos_emb_dim'] < 1
self.unsaved_modules = []
def add_unsaved_module(name, module):
self.unsaved_modules += [name]
setattr(self, name, module)
# input layers
input_size = 0
if self.use_word:
# frequent word embeddings
self.word_emb = nn.Embedding(len(vocab['word']), self.args['word_emb_dim'], padding_idx=0)
input_size += self.args['word_emb_dim']
if not self.share_hid:
# pos embeddings
self.pos_emb = nn.Embedding(len(vocab['pos']), self.args['pos_emb_dim'], padding_idx=0)
if self.use_char:
self.charmodel = CharacterModel(args, vocab, bidirectional=args['char_bidir'])
self.trans_char = nn.Linear(self.charmodel.num_dir * self.args['char_hidden_dim'], self.args['transformed_dim'], bias=False)
input_size += self.args['transformed_dim']
if self.use_pretrained:
# pretrained embeddings, by default this won't be saved into model file
add_unsaved_module('pretrained_emb', nn.Embedding.from_pretrained(torch.from_numpy(emb_matrix), freeze=True))
self.trans_pretrained = nn.Linear(emb_matrix.shape[1], self.args['transformed_dim'], bias=False)
input_size += self.args['transformed_dim']
# recurrent layers
self.taggerlstm = HighwayLSTM(input_size, self.args['tag_hidden_dim'], self.args['tag_num_layers'], batch_first=True, bidirectional=True, dropout=self.args['dropout'], rec_dropout=self.args['tag_rec_dropout'], highway_func=torch.tanh)
self.drop_replacement = nn.Parameter(torch.randn(input_size) / np.sqrt(input_size))
self.taggerlstm_h_init = nn.Parameter(torch.zeros(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim']))
self.taggerlstm_c_init = nn.Parameter(torch.zeros(2 * self.args['tag_num_layers'], 1, self.args['tag_hidden_dim']))
# classifiers
self.pos_hid = nn.Linear(self.args['tag_hidden_dim'] * 2, self.args['deep_biaff_hidden_dim'])
self.pos_clf = nn.Linear(self.args['deep_biaff_hidden_dim'], len(vocab['pos']))
self.pos_clf.weight.data.zero_()
self.pos_clf.bias.data.zero_()
if self.share_hid:
clf_constructor = lambda insize, outsize: nn.Linear(insize, outsize)
else:
self.feats_hid = nn.Linear(self.args['tag_hidden_dim'] * 2, self.args['composite_deep_biaff_hidden_dim'])
clf_constructor = lambda insize, outsize: BiaffineScorer(insize, self.args['pos_emb_dim'], outsize)
self.feats_clf = nn.ModuleList()
for l in vocab['feats'].lens():
if self.share_hid:
self.feats_clf.append(clf_constructor(self.args['deep_biaff_hidden_dim'], l))
self.feats_clf[-1].weight.data.zero_()
self.feats_clf[-1].bias.data.zero_()
else:
self.feats_clf.append(clf_constructor(self.args['composite_deep_biaff_hidden_dim'], l))
# criterion
self.crit = nn.CrossEntropyLoss(ignore_index=0) # ignore padding
self.drop = nn.Dropout(args['dropout'])
self.worddrop = WordDropout(args['word_dropout'])
def forward(self, word, word_mask, wordchars, wordchars_mask, pos, feats, pretrained, word_orig_idx, sentlens, wordlens):
def pack(x):
return pack_padded_sequence(x, sentlens, batch_first=True)
def get_batch_sizes(sentlens):
b = []
for i in range(max(sentlens)):
c = len([x for x in sentlens if x > i])
b.append(c)
return torch.tensor(b)
def pad(x):
return pad_packed_sequence(PackedSequence(x, batch_sizes), batch_first=True)[0]
inputs = []
if self.use_word:
word_emb = self.word_emb(word)
word_emb = pack(word_emb)
inputs += [word_emb]
batch_sizes = word_emb.batch_sizes
else:
batch_sizes = get_batch_sizes(sentlens)
if self.use_pretrained:
pretrained_emb = self.pretrained_emb(pretrained)
pretrained_emb = self.trans_pretrained(pretrained_emb)
pretrained_emb = pack(pretrained_emb)
inputs += [pretrained_emb]
if self.use_char:
char_reps = self.charmodel(wordchars, wordchars_mask, word_orig_idx, sentlens, wordlens)
char_reps = PackedSequence(self.trans_char(self.drop(char_reps.data)), char_reps.batch_sizes)
inputs += [char_reps]
lstm_inputs = torch.cat([x.data for x in inputs], 1)
lstm_inputs = self.worddrop(lstm_inputs, self.drop_replacement)
lstm_inputs = self.drop(lstm_inputs)
lstm_inputs = PackedSequence(lstm_inputs, inputs[0].batch_sizes)
lstm_outputs, _ = self.taggerlstm(lstm_inputs, sentlens, hx=(self.taggerlstm_h_init.expand(2 * self.args['tag_num_layers'], word.size(0), self.args['tag_hidden_dim']).contiguous(), self.taggerlstm_c_init.expand(2 * self.args['tag_num_layers'], word.size(0), self.args['tag_hidden_dim']).contiguous()))
lstm_outputs = lstm_outputs.data
pos_hid = F.relu(self.pos_hid(self.drop(lstm_outputs)))
pos_pred = self.pos_clf(self.drop(pos_hid))
preds = [pad(pos_pred).max(2)[1]]
pos = pack(pos).data
loss = self.crit(pos_pred.view(-1, pos_pred.size(-1)), pos.view(-1))
if self.share_hid:
feats_hid = pos_hid
clffunc = lambda clf, hid: clf(self.drop(hid))
else:
feats_hid = F.relu(self.feats_hid(self.drop(lstm_outputs)))
# TODO: self.training is never set, but check if this is a bug
#if self.training: pos_emb = self.pos_emb(pos) else:
pos_emb = self.pos_emb(pos_pred.max(1)[1])
clffunc = lambda clf, hid: clf(self.drop(hid), self.drop(pos_emb))
feats_preds = []
feats = pack(feats).data
for i in range(len(self.vocab['feats'])):
feats_pred = clffunc(self.feats_clf[i], feats_hid)
loss += self.crit(feats_pred.view(-1, feats_pred.size(-1)), feats[:, i].view(-1))
feats_preds.append(pad(feats_pred).max(2, keepdim=True)[1])
preds.append(torch.cat(feats_preds, 2))
return loss, preds
if __name__ == "__main__":
print("This file cannot be used on its own.")
print("To launch the tagger, use tagger.py instead of model.py")