-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiered-vector.hpp
284 lines (282 loc) · 10.5 KB
/
tiered-vector.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#ifndef TIERED_VECTOR_HPP
#define TIERED_VECTOR_HPP
#include <vector>
#include <array>
#include <iterator>
#include <type_traits>
#include <algorithm>
// vector with sqrt-decomposition
// supports O(1) access
// O(piece_size + n/piece_size) insert and erase in the middle, ammortized O(1) push_back and pop_back
// (assuming $piece_size \approx \sqrt n$, it's O(\sqrt n))
template <typename T>
class tiered_vector {
public:
typedef std::size_t size_type;
typedef T value_type;
typedef T &reference;
typedef const T &const_reference;
private:
static constexpr size_type default_shift = 4;
public:
size_type m_shift;
size_type m_size = 0;
std::vector<value_type> m_rep;
std::vector<size_type> m_pos;
constexpr size_type piece_size() const noexcept { return (static_cast<size_type>(1)<<m_shift); }
constexpr size_type mask() const noexcept { return piece_size() - 1; }
static size_type size2shift(size_type s) noexcept {
size_type shift = 1;
for (size_type mask = 1; ((s + mask)>>shift) > mask; ++shift)
mask = (mask << 1) | 1;
return shift;
}
public:
tiered_vector(size_type s = 0, const value_type &v = {})
: m_shift(size2shift(s)), m_size(s), m_pos((m_size + mask()) >> m_shift) {
m_rep.reserve(m_pos.size() << m_shift);
m_rep.resize(s, v);
m_rep.resize(m_pos.size() << m_shift);
}
tiered_vector(const tiered_vector &other) = default;
tiered_vector(tiered_vector &&other) = default;
tiered_vector & operator = (const tiered_vector &other) = default;
tiered_vector & operator = (tiered_vector &&other) = default;
void swap(tiered_vector &other) {
swap(m_rep, other.m_rep);
swap(m_pos, other.m_pos);
swap(m_size, other.m_size);
}
private:
template <typename IV, typename IT>
class Iterator {
IV *base;
public:
size_type pos;
Iterator(IV *base, size_type pos = 0):base{base}, pos{pos} {}
typedef std::random_access_iterator_tag iterator_category;
typedef IT value_type;
typedef value_type &reference;
typedef value_type *pointer;
typedef std::make_signed_t<size_type> difference_type;
Iterator(const Iterator &other) = default;
Iterator &operator = (const Iterator &other) = default;
reference operator *() const {
return (*base)[pos];
}
pointer operator ->() const { return &*(*this); }
reference operator [](difference_type n) const {
return *(*this + n);
}
auto & operator ++() { ++pos; return *this; }
auto & operator --() { --pos; return *this; }
auto operator ++(int) { auto temp = *this; ++(*this); return temp; }
auto operator --(int) { auto temp = *this; --(*this); return temp; }
auto & operator +=(difference_type n) { pos += n; return *this; }
auto operator +(const difference_type n) const { auto temp = *this; temp += n; return temp; }
auto operator -(const difference_type n) const { auto temp = *this; temp -= n; return temp; }
friend auto operator + (const difference_type n, const Iterator &a) { return a + n; }
difference_type operator - (const Iterator &other) const {
return pos - other.pos;
}
bool operator == (const Iterator &other) const { return pos == other.pos; }
bool operator < (const Iterator &other) const { return pos < other.pos; }
bool operator >= (const Iterator &other) const { return pos >= other.pos; }
bool operator <= (const Iterator &other) const { return pos <= other.pos; }
bool operator > (const Iterator &other) const { return pos > other.pos; }
bool operator != (const Iterator &other) const { return pos != other.pos; }
};
public:
typedef Iterator<tiered_vector, value_type> iterator;
typedef Iterator<const tiered_vector, const value_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// time O(1)
reference operator[](size_type pos) noexcept {
auto idx = pos >> m_shift;
auto sub = pos & mask();
return m_rep[(pos & ~mask()) + ((m_pos[idx] + sub) & mask())];
}
const_reference operator[](size_type pos) const noexcept {
auto idx = pos >> m_shift;
auto sub = pos & mask();
return m_rep[(pos & ~mask()) + ((m_pos[idx] + sub) & mask())];
}
reference at(size_type pos) {
if (pos >= size())
throw std::out_of_range("index is out of range");
return (*this)[pos];
}
const_reference at(size_type pos) const {
if (pos >= size())
throw std::out_of_range("index is out of range");
return (*this)[pos];
}
auto begin() noexcept {
return iterator(this, 0);
}
auto end() noexcept {
return iterator(this, m_size);
}
auto cbegin() const noexcept {
return const_iterator(this, 0);
}
auto cend() const noexcept {
return const_iterator(this, m_size);
}
auto rbegin() noexcept { return reverse_iterator(end()); }
auto rend() noexcept { return reverse_iterator(begin()); }
auto crbegin() const noexcept { return const_reverse_iterator(cend()); }
auto crend() const noexcept { return const_reverse_iterator(cbegin()); }
size_type size() const {
return m_size;
}
bool empty() const {
return m_pos.empty();
}
size_t capacity() const {
return m_rep.capacity();
}
void resize(size_t new_size) {
reserve(new_size);
m_size = new_size;
m_pos.resize((m_size + mask()) >> m_shift);
auto new_rep_size = m_pos.size() << m_shift;
if (new_rep_size > m_rep.size())
m_rep.resize(new_rep_size);
}
void reserve(size_t new_size) {
if (new_size <= m_size)
return;
if (auto new_shift = size2shift(new_size); new_shift > m_shift) {
flatten();
m_shift = new_shift;
m_pos.clear();
m_pos.resize((m_size + mask()) >> m_shift);
if (auto new_size = (m_pos.size() << m_shift); new_size > m_rep.size())
m_rep.resize(new_size);
}
auto new_rep_size = (new_size + mask()) >> m_shift;
m_pos.reserve(new_rep_size);
m_rep.reserve(new_rep_size << m_shift);
}
void shrink_to_fit() {
if (auto new_shift = size2shift(m_size); new_shift < m_shift) {
flatten();
m_shift = new_shift;
m_pos.clear();
m_pos.resize((m_size + mask()) >> m_shift);
}
m_rep.resize(m_pos.size() << m_shift);
m_rep.shrink_to_fit();
m_pos.shrink_to_fit();
}
iterator erase(iterator cpos) {
auto idx = cpos.pos >> m_shift;
auto sub = cpos.pos & mask();
auto spos = cpos.pos - sub;
auto &pos = m_pos[idx];
// TODO choose either move-to-front or move-to-back, depending on which is smaller
if (sub == 0) {
pos = (pos + 1) & mask();
} else {
auto eop = idx + 1 == m_pos.size() ? (pos + m_size) & mask() : pos;
sub = (sub + pos) & mask();
for (;;) {
auto next = (sub + 1) & mask();
if (next == eop)
break;
m_rep[spos + sub] = std::move(m_rep[spos + next]);
sub = next;
}
}
auto last = (m_pos[idx] - 1) & mask();
while(++idx != m_pos.size()) {
auto &npos = m_pos[idx];
m_rep[spos + last] = std::move(m_rep[spos + piece_size() + npos]);
last = npos;
npos = (npos + 1) & mask();
spos += piece_size();
}
if ((--m_size & mask()) == 0)
m_pos.pop_back();
return cpos;
}
void pop_back() {
auto last = end();
erase(--last);
}
// time = O(piece_size)
iterator insert(iterator cpos, const value_type &v) {
if ((size() & (size() - 1)) == 0)
reserve(size()*2);
auto idx = cpos.pos >> m_shift;
auto sub = cpos.pos & mask();
auto spos = cpos.pos - sub;
if ((m_size & mask()) == 0) {
m_pos.emplace_back(0);
if (auto new_size = (m_pos.size() << m_shift); new_size > m_rep.size())
m_rep.resize(new_size);
}
if (spos + sub == m_size++) { // special case: push_back
m_rep[spos + ((sub + m_pos[idx]) & mask())] = v;
return cpos;
}
auto endidx = m_pos.size();
auto endpos = (m_pos.size() - 1) << m_shift;
while(--endidx > idx) {
auto &pos = m_pos[endidx];
pos = (pos - 1) & mask();
auto prevpos = endpos - piece_size();
auto prevlast = (m_pos[endidx - 1] - 1) & mask();
m_rep[endpos + pos] = std::move(m_rep[prevpos + prevlast]);
endpos = prevpos;
}
#if 0
auto eop = pos - sub;
for (auto t = eop + piece_size; --t > pos; )
(*this)[t] = std::move((*this)[t - 1]);
(*this)[pos] = v;
#else
auto &pos = m_pos[idx];
// TODO choose either move-to-front or move-to-back, depending on which is smaller
if (sub == 0) {
pos = (pos - 1) & mask();
m_rep[spos + pos] = v;
} else {
auto eop = idx + 1 == m_pos.size() ? pos + m_size : pos;
eop = (eop - 1) & mask();
auto cv = (pos + sub) & mask();
while(eop != cv) {
auto next = (eop - 1) & mask();
m_rep[spos + eop] = std::move(m_rep[spos + next]);
eop = next;
}
m_rep[spos + cv] = v;
}
#endif
return cpos;
}
void flatten() {
if (empty()) return;
size_t idx = 0;
auto spos = m_rep.begin();
for(; idx != m_pos.size(); ++idx) {
auto next = spos + piece_size();
if (m_pos[idx]) {
std::rotate(spos, spos + m_pos[idx], next);
m_pos[idx] = 0;
}
spos = next;
}
}
auto &push_back(const value_type &v) {
return *insert(end(), v);
}
auto &back() { return (*this)[size() - 1]; }
const auto &back() const { return (*this)[size() - 1]; }
auto &front() { return (*this)[0]; }
const auto &front() const { return (*this)[0]; }
};
#endif // TIERED_VECTOR_HPP
// vim: et sw=4 ts=4