-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathui_demo.py
285 lines (207 loc) · 8.76 KB
/
ui_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import sys
import cv2
import numpy as np
import torch
from PIL import Image
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from models.sample_model import SampleFromPoseModel
from ui.mouse_event import GraphicsScene
from ui.ui import Ui_Form
from utils.language_utils import (generate_shape_attributes,
generate_texture_attributes)
from utils.options import dict_to_nonedict, parse
color_list = [(0, 0, 0), (255, 250, 250), (220, 220, 220), (250, 235, 215),
(255, 250, 205), (211, 211, 211), (70, 130, 180),
(127, 255, 212), (0, 100, 0), (50, 205, 50), (255, 255, 0),
(245, 222, 179), (255, 140, 0), (255, 0, 0), (16, 78, 139),
(144, 238, 144), (50, 205, 174), (50, 155, 250), (160, 140, 88),
(213, 140, 88), (90, 140, 90), (185, 210, 205), (130, 165, 180),
(225, 141, 151)]
class Ex(QWidget, Ui_Form):
def __init__(self, opt):
super(Ex, self).__init__()
self.setupUi(self)
self.show()
self.output_img = None
self.mat_img = None
self.mode = 0
self.size = 6
self.mask = None
self.mask_m = None
self.img = None
# about UI
self.mouse_clicked = False
self.scene = QGraphicsScene()
self.graphicsView.setScene(self.scene)
self.graphicsView.setAlignment(Qt.AlignTop | Qt.AlignLeft)
self.graphicsView.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.ref_scene = GraphicsScene(self.mode, self.size)
self.graphicsView_2.setScene(self.ref_scene)
self.graphicsView_2.setAlignment(Qt.AlignTop | Qt.AlignLeft)
self.graphicsView_2.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView_2.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.result_scene = QGraphicsScene()
self.graphicsView_3.setScene(self.result_scene)
self.graphicsView_3.setAlignment(Qt.AlignTop | Qt.AlignLeft)
self.graphicsView_3.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.graphicsView_3.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)
self.dlg = QColorDialog(self.graphicsView)
self.color = None
self.sample_model = SampleFromPoseModel(opt)
def open_densepose(self):
fileName, _ = QFileDialog.getOpenFileName(self, "Open File",
QDir.currentPath())
if fileName:
image = QPixmap(fileName)
mat_img = Image.open(fileName)
self.pose_img = mat_img.copy()
if image.isNull():
QMessageBox.information(self, "Image Viewer",
"Cannot load %s." % fileName)
return
image = image.scaled(self.graphicsView.size(),
Qt.IgnoreAspectRatio)
if len(self.scene.items()) > 0:
self.scene.removeItem(self.scene.items()[-1])
self.scene.addPixmap(image)
self.ref_scene.clear()
self.result_scene.clear()
# load pose to model
self.pose_img = np.array(
self.pose_img.resize(
size=(256, 512),
resample=Image.LANCZOS))[:, :, 2:].transpose(
2, 0, 1).astype(np.float32)
self.pose_img = self.pose_img / 12. - 1
self.pose_img = torch.from_numpy(self.pose_img).unsqueeze(1)
self.sample_model.feed_pose_data(self.pose_img)
def generate_parsing(self):
self.ref_scene.reset_items()
self.ref_scene.reset()
shape_texts = self.message_box_1.text()
shape_attributes = generate_shape_attributes(shape_texts)
shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
self.sample_model.feed_shape_attributes(shape_attributes)
self.sample_model.generate_parsing_map()
self.sample_model.generate_quantized_segm()
self.colored_segm = self.sample_model.palette_result(
self.sample_model.segm[0].cpu())
self.mask_m = cv2.cvtColor(
cv2.cvtColor(self.colored_segm, cv2.COLOR_RGB2BGR),
cv2.COLOR_BGR2RGB)
qim = QImage(self.colored_segm.data.tobytes(),
self.colored_segm.shape[1], self.colored_segm.shape[0],
QImage.Format_RGB888)
image = QPixmap.fromImage(qim)
image = image.scaled(self.graphicsView.size(), Qt.IgnoreAspectRatio)
if len(self.ref_scene.items()) > 0:
self.ref_scene.removeItem(self.ref_scene.items()[-1])
self.ref_scene.addPixmap(image)
self.result_scene.clear()
def generate_human(self):
for i in range(24):
self.mask_m = self.make_mask(self.mask_m,
self.ref_scene.mask_points[i],
self.ref_scene.size_points[i],
color_list[i])
seg_map = np.full(self.mask_m.shape[:-1], -1)
# convert rgb to num
for index, color in enumerate(color_list):
seg_map[np.sum(self.mask_m == color, axis=2) == 3] = index
assert (seg_map != -1).all()
self.sample_model.segm = torch.from_numpy(seg_map).unsqueeze(
0).unsqueeze(0).to(self.sample_model.device)
self.sample_model.generate_quantized_segm()
texture_texts = self.message_box_2.text()
texture_attributes = generate_texture_attributes(texture_texts)
texture_attributes = torch.LongTensor(texture_attributes)
self.sample_model.feed_texture_attributes(texture_attributes)
self.sample_model.generate_texture_map()
result = self.sample_model.sample_and_refine()
result = result.permute(0, 2, 3, 1)
result = result.detach().cpu().numpy()
result = result * 255
result = np.asarray(result[0, :, :, :], dtype=np.uint8)
self.output_img = result
qim = QImage(result.data.tobytes(), result.shape[1], result.shape[0],
QImage.Format_RGB888)
image = QPixmap.fromImage(qim)
image = image.scaled(self.graphicsView.size(), Qt.IgnoreAspectRatio)
if len(self.result_scene.items()) > 0:
self.result_scene.removeItem(self.result_scene.items()[-1])
self.result_scene.addPixmap(image)
def top_mode(self):
self.ref_scene.mode = 1
def skin_mode(self):
self.ref_scene.mode = 15
def outer_mode(self):
self.ref_scene.mode = 2
def face_mode(self):
self.ref_scene.mode = 14
def skirt_mode(self):
self.ref_scene.mode = 3
def hair_mode(self):
self.ref_scene.mode = 13
def dress_mode(self):
self.ref_scene.mode = 4
def headwear_mode(self):
self.ref_scene.mode = 7
def pants_mode(self):
self.ref_scene.mode = 5
def eyeglass_mode(self):
self.ref_scene.mode = 8
def rompers_mode(self):
self.ref_scene.mode = 21
def footwear_mode(self):
self.ref_scene.mode = 11
def leggings_mode(self):
self.ref_scene.mode = 6
def ring_mode(self):
self.ref_scene.mode = 16
def belt_mode(self):
self.ref_scene.mode = 10
def neckwear_mode(self):
self.ref_scene.mode = 9
def wrist_mode(self):
self.ref_scene.mode = 17
def socks_mode(self):
self.ref_scene.mode = 18
def tie_mode(self):
self.ref_scene.mode = 23
def earstuds_mode(self):
self.ref_scene.mode = 22
def necklace_mode(self):
self.ref_scene.mode = 20
def bag_mode(self):
self.ref_scene.mode = 12
def glove_mode(self):
self.ref_scene.mode = 19
def background_mode(self):
self.ref_scene.mode = 0
def make_mask(self, mask, pts, sizes, color):
if len(pts) > 0:
for idx, pt in enumerate(pts):
cv2.line(mask, pt['prev'], pt['curr'], color, sizes[idx])
return mask
def save_img(self):
if type(self.output_img):
fileName, _ = QFileDialog.getSaveFileName(self, "Save File",
QDir.currentPath())
cv2.imwrite(fileName + '.png', self.output_img[:, :, ::-1])
def undo(self):
self.scene.undo()
def clear(self):
self.ref_scene.reset_items()
self.ref_scene.reset()
self.ref_scene.clear()
self.result_scene.clear()
if __name__ == '__main__':
app = QApplication(sys.argv)
opt = './configs/sample_from_pose.yml'
opt = parse(opt, is_train=False)
opt = dict_to_nonedict(opt)
ex = Ex(opt)
sys.exit(app.exec_())