-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils.py
35 lines (29 loc) · 956 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from torchvision import models
from torch.autograd import Variable
from torch._thnn import type2backend
def load_model(arch):
'''
Args:
arch: (string) valid torchvision model name,
recommendations 'vgg16' | 'googlenet' | 'resnet50'
'''
if arch == 'googlenet':
from googlenet import get_googlenet
model = get_googlenet(pretrain=True)
else:
model = models.__dict__[arch](pretrained=True)
model.eval()
return model
def cuda_var(tensor, requires_grad=False):
return Variable(tensor.cuda(), requires_grad=requires_grad)
def upsample(inp, size):
'''
Args:
inp: (Tensor) input
size: (Tuple [int, int]) height x width
'''
backend = type2backend[inp.type()]
f = getattr(backend, 'SpatialUpSamplingBilinear_updateOutput')
upsample_inp = inp.new()
f(backend.library_state, inp, upsample_inp, size[0], size[1])
return upsample_inp