-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpreprocess.py
65 lines (55 loc) · 2.06 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torchvision.transforms as transforms
import numpy as np
import torch
class PatternPreprocess(object):
# only work for VGG16
def __init__(self, scale_size):
self.scale = transforms.Compose([
transforms.Scale(scale_size),
])
self.offset = np.array([103.939, 116.779, 123.68])[:, np.newaxis, np.newaxis]
def __call__(self, raw_img):
scaled_img = self.scale(raw_img)
ret = np.array(scaled_img, dtype=np.float)
# Channels first.
ret = ret.transpose(2, 0, 1)
# To BGR.
ret = ret[::-1, :, :]
# Remove pixel-wise mean.
ret -= self.offset
ret = np.ascontiguousarray(ret)
ret = torch.from_numpy(ret).float()
return ret
def get_preprocess(arch, method):
if arch == 'googlenet':
transf = transforms.Compose([
transforms.Scale((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[123. / 255, 117. / 255, 104. / 255],
std=[1. / 255, 1. / 255, 1. / 255])
])
elif arch == 'vgg16':
if method.find('pattern') != -1: # pattern_net, pattern_lrp
transf = transforms.Compose([
PatternPreprocess((224, 224))
])
else:
transf = transforms.Compose([
transforms.Scale((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
elif arch == 'resnet50':
if method == 'real_time_saliency':
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
else:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transf = transforms.Compose([
transforms.Scale((224, 224)),
transforms.ToTensor(),
normalize
])
return transf