-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_svrg.py
238 lines (193 loc) · 8.19 KB
/
run_svrg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
import argparse
import os
import json
from datetime import datetime
import time
from sgd import SGD_Simple
from svrg import SVRG_k, SVRG_Snapshot
from utils import MNIST_dataset, CIFAR10_dataset, MNIST_two_layers, MNIST_one_layer, CIFAR10_ConvNet, AverageCalculator, accuracy, plot_train_stats
parser = argparse.ArgumentParser(description="Train SVRG/SGD on MNIST data.")
parser.add_argument('--optimizer', type=str, default="SVRG",
help="optimizer.")
parser.add_argument('--nn_model', type=str, default="MNIST_one_layer",
help="neural network model.")
parser.add_argument('--dataset', type=str, default="MNIST",
help="neural network model.")
parser.add_argument('--n_epoch', type=int, default=100,
help="number of training iterations.")
parser.add_argument('--lr', type=float, default=0.001,
help="learning rate.")
parser.add_argument('--batch_size', type=int, default=64,
help="batch size.")
parser.add_argument('--weight_decay', type=float, default=0.0001,
help="regularization strength.")
parser.add_argument('--exp_name', type=str, default="",
help="name of the experiment.")
parser.add_argument('--print_every', type=int, default=1,
help="how often to print the loss.")
OUTPUT_DIR = "outputs"
BATCH_SIZE_LARGE = 256 # for testing and the full-batch outer train loop
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
print("Using device: {}".format(device))
def train_epoch_SGD(model, optimizer, train_loader, loss_fn, flatten_img=True):
model.train()
loss = AverageCalculator()
acc = AverageCalculator()
for images, labels in train_loader:
images = images.to(device)
if flatten_img:
images = images.view(images.shape[0], -1)
yhat = model(images)
labels = labels.to(device)
loss_iter = loss_fn(yhat, labels)
# optimization
optimizer.zero_grad()
loss_iter.backward()
optimizer.step()
# logging
acc_iter = accuracy(yhat, labels)
loss.update(loss_iter.data.item())
acc.update(acc_iter)
return loss.avg, acc.avg
def train_epoch_SVRG(model_k, model_snapshot, optimizer_k, optimizer_snapshot, train_loader, loss_fn, flatten_img=True):
model_k.train()
model_snapshot.train()
loss = AverageCalculator()
acc = AverageCalculator()
# calculate the mean gradient
optimizer_snapshot.zero_grad() # zero_grad outside for loop, accumulate gradient inside
for images, labels in train_loader:
images = images.to(device)
if flatten_img:
images = images.view(images.shape[0], -1)
yhat = model_snapshot(images)
labels = labels.to(device)
snapshot_loss = loss_fn(yhat, labels) / len(train_loader)
snapshot_loss.backward()
# pass the current paramesters of optimizer_0 to optimizer_k
u = optimizer_snapshot.get_param_groups()
optimizer_k.set_u(u)
for images, labels in train_loader:
images = images.to(device)
if flatten_img:
images = images.view(images.shape[0], -1)
yhat = model_k(images)
labels = labels.to(device)
loss_iter = loss_fn(yhat, labels)
# optimization
optimizer_k.zero_grad()
loss_iter.backward()
yhat2 = model_snapshot(images)
loss2 = loss_fn(yhat2, labels)
optimizer_snapshot.zero_grad()
loss2.backward()
optimizer_k.step(optimizer_snapshot.get_param_groups())
# logging
acc_iter = accuracy(yhat, labels)
loss.update(loss_iter.data.item())
acc.update(acc_iter)
# update the snapshot
optimizer_snapshot.set_param_groups(optimizer_k.get_param_groups())
return loss.avg, acc.avg
def validate_epoch(model, val_loader, loss_fn):
"""One epoch of validation
"""
model.eval()
loss = AverageCalculator()
acc = AverageCalculator()
for images, labels in val_loader:
images = images.to(device)
if flatten_img:
images = images.view(images.shape[0], -1)
yhat = model(images)
labels = labels.to(device)
# logging
loss_iter = loss_fn(yhat, labels)
acc_iter = accuracy(yhat, labels)
loss.update(loss_iter.data.item())
acc.update(acc_iter)
return loss.avg, acc.avg
if __name__ == "__main__":
args = parser.parse_args()
args_dict = vars(args)
if not args.optimizer in ['SGD', 'SVRG']:
raise ValueError("--optimizer must be 'SGD' or 'SVRG'.")
print(args_dict)
# load the data
if args.dataset == "MNIST":
train_set, val_set = MNIST_dataset()
flatten_img = True
elif args.dataset == "CIFAR10":
train_set, val_set = CIFAR10_dataset()
flatten_img = False
else:
raise ValueError("Unknown dataset")
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_set, batch_size=BATCH_SIZE_LARGE, shuffle=True)
if args.nn_model == "MNIST_one_layer":
NN_model = MNIST_one_layer # function name
elif args.nn_model == "MNIST_two_layers":
NN_model = MNIST_two_layers
elif args.nn_model == "CIFAR10_convnet":
NN_model = CIFAR10_ConvNet
else:
raise ValueError("Unknown nn_model.")
model = NN_model().to(device)
if args.optimizer == 'SVRG':
model_snapshot = NN_model().to(device)
lr = args.lr # learning rate
n_epoch = args.n_epoch # the number of epochs
loss_fn = nn.NLLLoss() # The loss function
if args.nn_model == "CIFAR10_convnet":
loss_fn = nn.CrossEntropyLoss()
# the optimizer
if args.optimizer == "SGD":
optimizer = SGD_Simple(model.parameters(), lr=lr, weight_decay=args.weight_decay)
elif args.optimizer == "SVRG":
optimizer = SVRG_k(model.parameters(), lr=lr, weight_decay=args.weight_decay)
optimizer_snapshot = SVRG_Snapshot(model_snapshot.parameters())
# output folder
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
model_name = timestamp + "_" + args.optimizer + "_" + args.nn_model
if args.exp_name != "":
model_name = args.exp_name + '_' + model_name
log_dir = os.path.join(OUTPUT_DIR, model_name)
if not os.path.isdir(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
if not os.path.isdir(log_dir):
os.mkdir(log_dir)
with open(os.path.join(log_dir, "args.json"), "w") as f:
json.dump(args_dict, f)
# store training stats
train_loss_all, val_loss_all = [], []
train_acc_all, val_acc_all = [], []
for epoch in range(n_epoch):
t0 = time.time()
# training
if args.optimizer == "SGD":
train_loss, train_acc = train_epoch_SGD(model, optimizer, train_loader, loss_fn, flatten_img=flatten_img)
elif args.optimizer == "SVRG":
train_loss, train_acc = train_epoch_SVRG(model, model_snapshot, optimizer, optimizer_snapshot, train_loader, loss_fn, flatten_img=flatten_img)
# validation
val_loss, val_acc = validate_epoch(model, val_loader, loss_fn)
train_loss_all.append(train_loss) # averaged loss for the current epoch
train_acc_all.append(train_acc)
val_loss_all.append(val_loss)
val_acc_all.append(val_acc)
fmt_str = "epoch: {}, train loss: {:.4f}, train acc: {:.4f}, val loss: {:.4f}, val acc: {:.4f}, time: {:.2f}"
if epoch % args.print_every == 0:
print(fmt_str.format(epoch, train_loss, train_acc, val_loss, val_acc, time.time() - t0))
# save data and plot
if (epoch + 1) % 5 == 0:
np.savez(os.path.join(log_dir, 'train_stats.npz'),
train_loss=np.array(train_loss_all), train_acc=np.array(train_acc_all),
val_loss=np.array(val_loss_all), val_acc=np.array(val_acc_all))
plot_train_stats(train_loss_all, val_loss_all, train_acc_all, val_acc_all, log_dir, acc_low=0.9)
# done
open(os.path.join(log_dir, 'done'), 'a').close()