Skip to content

Latest commit

 

History

History
1038 lines (797 loc) · 26.6 KB

FlumeOverwrite.md

File metadata and controls

1038 lines (797 loc) · 26.6 KB

Flume概述

定义

  • Flume是向Hadoop批量导入基于事件的海量数据,例如利用Flume从一组Web服务器中搜集日志文件,然后把这些文件转移到一个新的HDFS汇总文件中以做进一步处理,其终点(或者sink)通常为HDFS。
  • Flume也支持导入其他系统比如HBase或Solr。
  • 基于流式架构,灵活简单。
  • 支持动态配置,定时拉取flume-ng配置,配置热更新。

Flume适合场景

Flume场景

运行流程

img

  • 使用Flume需要运行Flume代理,Flume代理是由持续运行的sourcesink以及channel(用于连接source和sink)构成的Java进程
  • Flume的sourcgite产生事件,并将其传输给channelchannel存储这些事件直至转发给sink
  • 可以把source-channel-sink的组合视为基本的Flume构件。

基础架构

Agent

  • JVM进程,以事件的形式将数据从source sink到目的地。
  • 包含Souce、Channel、Sink是哪个部分

Souce

  • Souce复制接收数据到FLume Agent的组件。SOuce组件支持处理多种类型多种格式的日志数据,包括avro、thrift、execjms、spooling directory、netcat、sequence generator、syslog、http、legacy。

Sink

  • Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent.
  • Sink组件目的地包括hdfsloggeravro、thrift、ipc、fileHBase、solr、自定义。

Channel

  • Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作
  • 自带Channel:MemoryFile以及KafkaChannel
  • Memory Channel是内存中的队列。File Channel是将所有事件写到磁盘。

Event

  • 传输单元,Flume数据传输的基本单元,以Event的形式将数据从源头送至目的地。Event由HeaderBody两部分组成,Header用来存放该event的一些属性,为K-V结构,Body用来存放该条数据, 形式为字节数组

Flume安装

安装配置

http://www.apache.org/dyn/closer.lua/flume/1.9.0/apache-flume-1.9.0-bin.tar.gz

# 解压
tar -zxvf apache-flume-1.9.0-bin.tar.gz
# 配置环境变量
#Flume环境
export FLUME_HOME=/Users/babywang/Documents/reserch/studySummary/bigdata/flume/apache-flume-1.9.0
export PATH=$PATH:$FLUME_HOME/bin

# 配置JAVA HOME
# export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_221.jdk/Contents/Home
  • Flume-ng启动代理查看是否安装成功

入门案例

官方文档Netcat

创建配置

# example.conf: A single-node Flume configuration

# Name the components on this agent
# a1为agent的名称
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
# 配置agent a1的source配置
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 9999

# Describe the sink
# 配置agent a1的sink配置
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
# 配置agent a1的channel配置
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
# 绑定source和channel,sink和channel,channel和sink为1对n,source和channel为1对多
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动Flume-ng

flume-ng agent -n a1 -c $FLUME_HOME/conf -f netcat-flume-logger.conf -Dflume.root.logger=INFO,console
  • -n: 指定运行的agent名称
  • -c:指定flume配置文件目录
  • -f:运行的Job

启动netcat客户端

nc localhost 9999

实时监控单个文件

  • 实时监控Zookeeper日志,并上传到HDFS中

配置文件到日志

a1.sources = r1
a1.sinks = k1
a1.channels = c1


# 配置source -F失败后会重试 -f直接读取后面的数据
a1.sources.r1.type = exec
a1.sources.r1.command = tail -f /Users/babywang/Documents/reserch/studySummary/module/hadoop-2.8.5/logs/hadoop-babywang-namenode-research.log

# 配置sink
a1.sinks.k1.type = logger

# 配置agent a1的channel配置
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# source绑定channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel=c1
  • 启动flume-ng
flume-ng agent -n a1 -c $FLUME_HOME/conf -f file-flume-logger.conf -Dflume.root.logger=INFO,console

日志到HDFS

  • 将Hadoop相关jar拷贝至Flume lib目录下
#从hadoop/shared目录下拷贝
hadoop-auth-2.8.5.jar
hadoop-common-2.8.5.jar
hadoop-hdfs-2.8.5.jar
commons-io-2.4.jar
commons-configuration-1.6.jar
htrace-core4-4.0.1-incubating.jar
  • 配置
a1.sources = r1
a1.sinks = k1
a1.channels = c1


# 配置source -F失败后会重试 -f直接读取后面的数据
a1.sources.r1.type = exec
a1.sources.r1.command = tail -f /Users/babywang/Documents/reserch/studySummary/module/hadoop-2.8.5/logs/hadoop-babywang-namenode-research.log

# 配置sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop:8020/hadoop/logs/%y-%m-%d/%H%M/%S
# 上传文件前缀
a1.sinks.k1.hdfs.filePrefix = namenode-
# 上传文件后缀
a1.sinks.k1.hdfs.fileSuffix = log
# 是否按照实际滚动文件夹
a1.sinks.k1.hdfs.round = true
# 多少时间单位创建一个新的文件夹
a1.sinks.k1.hdfs.roundValue = 1
a1.sinks.k1.hdfs.roundUnit = hour
# 是否使用本地时间戳
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 积攒多少个Event才flush到HDFS一次
a1.sinks.k1.hdfs.batchSize = 1000
# 设置文件类型,可支持压缩
a1.sinks.k1.hdfs.fileType = DataStream
# 多久生成一个文件
a1.sinks.k1.hdfs.rollInterval = 60
# 设置每个文件的滚动大小 
a1.sinks.k1.hdfs.rollSize = 134217700
# 文件的滚动与Event数量无关
a1.sinks.k1.hdfs.rollCount = 0

# 配置agent a1的channel配置
a1.channels.c1.type = memory
a1.channels.c1.capacity = 3000
a1.channels.c1.transactionCapacity = 2000

# source绑定channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel=c1
  • 启动脚本
flume-ng agent -n a1 -c $FLUME_HOME/conf -f file-flume-hdfs.conf

实时监控目录下多个新文件

  • 使用Spooling Directory Source
a1.sources = s1
a1.sinks = k1
a1.channels = c1

# sources
a1.sources.s1.type = TAILDIR
a1.sources.s1.positionFile = /Users/babywang/Documents/reserch/studySummary/module/flume-1.9.0/job/taildir_position.json
a1.sources.s1.filegroups = f1 f2
a1.sources.s1.filegroups.f1 = /Users/babywang/Documents/reserch/studySummary/module/test/file1.txt
a1.sources.s1.filegroups.f2 = /Users/babywang/Documents/reserch/studySummary/module/test/file2.txt

# sink
a1.sinks.k1.type = logger

# channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactitionCapacity = 100

# binds
a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1
  • 启动脚本
flume-ng agent -n a1 -c $FLUME_HOME/conf -f dir-flume-hdfs.conf

实时监控目录下多个追加文件

  • 无法使用Exec source因为Exec无法保证数据不丢失,Spooldir Source能够保证数据不丢失,且能够实现断点续传,存在延迟,不能实时监控;Taildir Source支持断点续传,也可以保证数据不丢失并且低延迟支持实时监控。

Taildir Source配置

高级特性

事务和可靠性

原理

flume事务原理

  • Flume使用两个独立的事务分别负责从source到channel以及从channel到sink的事件传递
  • 一旦事务中的所有事件全部传递到channel且提交成功,那么source就将该文件标记为已完成。如果事件失败就会回滚保存在channel中等待重新传递

Flume的channel类型

  • file channel,具有持久性,只要事件被写入channel,即使代理重新启动,事件也不会丢失
  • memory channel,事件缓冲在存储器中,不具有持久存储能力

批量处理

  • Flume在有可能的情况下尽量以事务为单位来批量处理事件,而不是逐个事件进行处理批量处理有利于提高file channel的性能,因为每个事务只需要写一次本地磁盘和调用一次fsync函数
  • 批量的大小取决于组件的类型,并且大多数情况下是配置的

Flume Agent原理

Agent原理流程图

Multiplexing Channel Selector

a1.sources = r1
a1.channels = c1 c2 c3 c4
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = state
# 如果header中包含state CZ选择c1channel,包含state US选择c2 c3默认选择c4
a1.sources.r1.selector.mapping.CZ = c1
a1.sources.r1.selector.mapping.US = c2 c3
a1.sources.r1.selector.default = c4

Flume拓扑结构

简单串联

Two agents communicating over Avro RPC

  • 这种模式是将多个flume顺序连接起来,从最初的source开始到最终sink传送的目的存储系统。不适合桥接过多的flume数量,flume数量过多会导致传送速度变慢和系统稳定性。

复制和多路复用

Agent原理流程图

  • Flume支持将事件流向一个或多个目的地。这种模式可以将相同数据复制到多个channel中,或者将不同数据分发到不同channel中,sink可以选择传送到不同的目的地。

single-source-mutil-sink

flume-1.sources = s1
flume-1.sinks = k1 k2
flume-1.channels = c1 c2

# source
flume-1.sources.s1.type = TAILDIR
flume-1.sources.s1.positionFile = /Users/babywang/Documents/reserch/studySummary/module/flume-1.9.0/job/position.json
flume-1.sources.s1.filegroups = f1
flume-1.sources.s1.filegroups.f1 = /Users/babywang/Documents/reserch/studySummary/module/hadoop-2.8.5/logs/hadoop-babywang-namenode-research.log


# sinks
## k1
flume-1.sinks.k1.type = avro
flume-1.sinks.k1.hostname = hadoop
flume-1.sinks.k1.port = 4545
## k2
flume-1.sinks.k2.type = avro
flume-1.sinks.k2.hostname = hadoop
flume-1.sinks.k2.port = 4546

# channels 
## c1
flume-1.channels.c1.type = memory
flume-1.channels.c1.capacity = 1000
flume-1.channels.c1.transactitionCapacity = 100

## c2
flume-1.channels.c2.type = memory
flume-1.channels.c2.capacity = 1000
flume-1.channels.c2.transactitionCapacity = 100

# 将数据流复制给所有channel
flume-1.sources.s1.selector.type = replicating

# bind
flume-1.sinks.k1.channel = c1
flume-1.sinks.k2.channel = c2
flume-1.sources.s1.channels = c1 c2

avro-logger

flume-2.sources = s1
flume-2.sinks = k1
flume-2.channels = c1

# source
flume-2.sources.s1.type = avro
flume-2.sources.s1.bind = hadoop
flume-2.sources.s1.port = 4546


# sinks
flume-2.sinks.k1.type = logger

# channels 
flume-2.channels.c1.type = memory
flume-2.channels.c1.capacity = 1000
flume-2.channels.c1.transactitionCapacity = 100

# bind
flume-2.sinks.k1.channel = c1
flume-2.sources.s1.channels = c1

avro-hdfs

flume-3.sources = s1
flume-3.sinks = k1
flume-3.channels = c1

# source
flume-3.sources.s1.type = avro
flume-3.sources.s1.bind = hadoop
flume-3.sources.s1.port = 4545


# sinks
flume-3.sinks.k1.type = hdfs
flume-3.sinks.k1.hdfs.path = hdfs://hadoop:8020/hadoop/logs/%y-%m-%d/%H%M/%S
# 上传文件前缀
flume-3.sinks.k1.hdfs.filePrefix = namenode-
# 上传文件后缀
flume-3.sinks.k1.hdfs.fileSuffix = log
# 是否按照实际滚动文件夹
flume-3.sinks.k1.hdfs.round = true
# 多少时间单位创建一个新的文件夹
flume-3.sinks.k1.hdfs.roundValue = 1
flume-3.sinks.k1.hdfs.roundUnit = hour
# 是否使用本地时间戳
flume-3.sinks.k1.hdfs.useLocalTimeStamp = true
# 积攒多少个Event才flush到HDFS一次
flume-3.sinks.k1.hdfs.batchSize = 100
# 设置文件类型,可支持压
flume-3.sinks.k1.hdfs.fileType = DataStream
# 多久生成一个文件
flume-3.sinks.k1.hdfs.rollInterval = 60
# 设置每个文件的滚动大小 
flume-3.sinks.k1.hdfs.rollSize = 134217700
# 文件的滚动与Event数量无关
flume-3.sinks.k1.hdfs.rollCount = 0


# channels 
flume-3.channels.c1.type = memory
flume-3.channels.c1.capacity = 1000
flume-3.channels.c1.transactitionCapacity = 200

# bind
flume-3.sinks.k1.channel = c1
flume-3.sources.s1.channels = c1
  • 先启动下游Flume Ng,在启动上游Flume-Ng

负载均衡和故障转移

Agent原理流程图

  • 将多个sink逻辑上分到一个sink组,sink组配合不同的SinkProcessor可以实现负载均衡和故障转移。

single-source-failover-sink

# flume1
a1.sources = s1
a1.sinks = k1 k2
a1.channels = c1
a1.sinkgroups = g1
# sources
a1.sources.s1.type=netcat
a1.sources.s1.bind=hadoop
a1.sources.s1.port=9999
# sinks
a1.sinks.k1.type=avro
a1.sinks.k1.hostname=hadoop
a1.sinks.k1.port=4000
a1.sinks.k2.type=avro
a1.sinks.k2.hostname=hadoop
a1.sinks.k2.port=4001
# sink groups
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
a1.sinkgroups.g1.processor.maxpenalty = 10000
# channels
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
# bind
a1.sources.s1.channels=c1
a1.sinks.k1.channel=c1
a1.sinks.k2.channel=c1

# sink1-flume2
a2.sources = s2
a2.sinks = k2
a2.channels = c2
# sources
a2.sources.s2.type=avro
a2.sources.s2.bind=hadoop
a2.sources.s2.port=4000
# sinks
a2.sinks.k2.type=logger
# channels
a2.channels.c2.type=memory
a2.channels.c2.capacity=1000
a2.channels.c2.transactionCapacity=100
# bind
a2.sources.s2.channels=c2
a2.sinks.k2.channel=c2

# sink2-flume3
a3.sources = s3
a3.sinks = k3
a3.channels = c3
# sources
a3.sources.s3.type=avro
a3.sources.s3.bind=hadoop
a3.sources.s3.port=4001
# sinks
a3.sinks.k3.type=logger
# channels
a3.channels.c3.type=memory
a3.channels.c3.capacity=1000
a3.channels.c3.transactionCapacity=100
# bind
a3.sources.s3.channels=c3
a3.sinks.k3.channel=c3

Load_balancing_sinks

# source端
a1.sources = s1
a1.sinks = k1 k2
a1.channels = c1
a1.sinkgroups = g1

# sources
a1.sources.s1.type=netcat
a1.sources.s1.bind=hadoop
a1.sources.s1.port=9999

# sinks
a1.sinks.k1.type=avro
a1.sinks.k1.hostname=hadoop
a1.sinks.k1.port=4000

a1.sinks.k2.type=avro
a1.sinks.k2.hostname=hadoop
a1.sinks.k2.port=4001

# sink groups
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin

# channels
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100

# bind
a1.sources.s1.channels=c1
a1.sinks.k1.channel=c1
a1.sinks.k2.channel=c1

# sink1
a2.sources = s2
a2.sinks = k2
a2.channels = c2
# sources
a2.sources.s2.type=avro
a2.sources.s2.bind=hadoop
a2.sources.s2.port=4000
# sinks
a2.sinks.k2.type=logger
# channels
a2.channels.c2.type=memory
a2.channels.c2.capacity=1000
a2.channels.c2.transactionCapacity=100
# bind
a2.sources.s2.channels=c2
a2.sinks.k2.channel=c2

# sink2
a3.sources = s3
a3.sinks = k3
a3.channels = c3
# sources
a3.sources.s3.type=avro
a3.sources.s3.bind=hadoop
a3.sources.s3.port=4001
# sinks
a3.sinks.k3.type=logger
# channels
a3.channels.c3.type=memory
a3.channels.c3.capacity=1000
a3.channels.c3.transactionCapacity=100
# bind
a3.sources.s3.channels=c3
a3.sinks.k3.channel=c3

聚合

A fan-in flow using Avro RPC to consolidate events in one place

  • 收集web应用日志分布式方式手机多个web服务器的日志然后汇总到一台最终sink到存储系统。

自定义Interceptor

  • 实现org.apache.flume.interceptor.Interceptor接口
/**
 * @fileName: TypeInterceptor.java
 * @description: 自定义Flume拦截器
 * @author: by echo huang
 * @date: 2020-07-31 00:12
 */
public class TypeInterceptor implements Interceptor {
    /**
     * 添加过头的事件
     */
    private List<Event> addHeaderEvents;

    @Override
    public void initialize() {
        this.addHeaderEvents = Lists.newArrayList();
    }

    /**
     * 单个事件拦截
     *
     * @param event
     * @return
     */
    @Override
    public Event intercept(Event event) {
        Map<String, String> headers = event.getHeaders();
        String body = new String(event.getBody());
        //如果event的body包含hello则向header添加一个标签
        if (body.contains("hello")) {
            headers.put("type", "yes");
        } else {
            headers.put("type", "no");
        }
        return event;
    }

    /**
     * 批量事件拦截
     *
     * @param list
     * @return
     */
    @Override
    public List<Event> intercept(List<Event> list) {
        this.addHeaderEvents.clear();

        list.forEach(event -> addHeaderEvents.add(intercept(event)));

        return this.addHeaderEvents;
    }

    @Override
    public void close() {

    }

    public static class InterceptorBulder implements Builder {

        @Override
        public Interceptor build() {
            return new TypeInterceptor();
        }

        /**
         * 传递配置,可以将外部配置传递至内部
         *
         * @param context 配置上下文
         */
        @Override
        public void configure(Context context) {

        }
    }
}
  • 打包将jar包上传至flume的lib下

  • 添加flume配置interceptors

# interceptor
a2.sources.s1.interceptors = i1
a2.sources.s1.interceptors.i1.type = org.research.flume.interceptor.TypeInterceptor$InterceptorBulder

# channel selector
a2.sources.s1.selector.type=multiplexing
a2.sources.s1.selector.header=type
a2.sources.s1.selector.mapping.yes=c1
a2.sources.s1.selector.mapping.no=c2

自定义Source

  • 继承AbstractSource类,实现ConfigurablePollableSource接口
public class OssSource extends AbstractSource implements Configurable, PollableSource {

    private String prefix;
    private String suffix;

    @Override
    public void configure(Context context) {
        this.prefix = context.getString("prefix");
        this.suffix = context.getString("suffix", "suffix");

    }

    /**
     * 1.接受数据(读取OSS数据)
     * 2.封装事件
     * 3.将事件传递给Channel
     *
     * @return
     * @throws EventDeliveryException
     */
    @Override
    public Status process() throws EventDeliveryException {
        Status status = null;
        try {
            for (int i = 0; i < 5; i++) {
                SimpleEvent event = new SimpleEvent();
                event.setBody((prefix + "--" + i + "--" + suffix).getBytes());
                //传递数据给Channel
                getChannelProcessor().processEvent(event);
                status = Status.READY;
            }
            Thread.sleep(2000);
        } catch (Exception e) {
            status = Status.BACKOFF;
        }
        return status;
    }

    @Override
    public long getBackOffSleepIncrement() {
        return 0;
    }

    @Override
    public long getMaxBackOffSleepInterval() {
        return 0;
    }
}
  • 配置自定义source
a1.sources = s1
a1.sinks =k1
a1.channels=c1

# source
a1.sources.s1.type=org.research.flume.source.OssSource
a1.sources.s1.prefix=hello
a1.sources.s1.suffix=world

# sinks
a1.sinks.k1.type=logger

# channels
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
# bind
a1.sources.s1.channels=c1
a1.sinks.k1.channel=c1

自定义Sink

  • 继承AbstractSink实现Configurable接口,Sink是完全事务性的,从Channel批量删除数据之前,每个SInk用Channel启动一个事务,批量事件一旦成功写出则利用Channel提交事务。事务一旦提交,该Channel从自己的内部缓冲区删除事件。
public class CustomSink extends AbstractSink implements Configurable {

    private static final Logger LOGGER = LoggerFactory.getLogger(CustomSink.class);

    private String prefix;
    private String suffix;

    @Override
    public Status process() throws EventDeliveryException {
        Status status = null;
        Channel channel = getChannel();
        //拿到channel事务
        Transaction transaction = channel.getTransaction();
        transaction.begin();
        try {
            Event take = channel.take();

            String body = new String(take.getBody(), Charsets.UTF_8);
            LOGGER.info("result:{}", prefix + body + suffix);
            transaction.commit();
            status = Status.READY;
        } catch (Exception e) {
            transaction.rollback();
            status = Status.BACKOFF;
        } finally {
            transaction.close();
        }
        return status;
    }

    @Override
    public void configure(Context context) {
        this.prefix = context.getString("prefix");
        this.suffix = context.getString("suffix", "on the road");
    }
}
  • flume配置
a1.sources = s1
a1.sinks =k1
a1.channels=c1

# source
a1.sources.s1.type = netcat
a1.sources.s1.bind = hadoop
a1.sources.s1.port = 9999

# sinks
a1.sinks.k1.type=org.research.flume.sink.CustomSink
a1.sinks.k1.prefix=hello
a1.sinks.k1.suffix=world

# channels
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
# bind
a1.sources.s1.channels=c1
a1.sinks.k1.channel=c1

Flume数据流监控

Ganglia的安装与部署

  • 替换yum源
mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
sed -i -e ‘/mirrors.cloud.aliyuncs.com/d‘ -e ‘/mirrors.aliyuncs.com/d‘ /etc/yum.repos.d/CentOS-Base.repo
  • 安装httpd服务与php
sudo yum -y install httpd php	
  • 安装其他依赖
sudo yum -y install rrdtool perl-rrdtool rrdtool-devel
sudo yum -y install apr-devel
  • 安装ganglia
mv /etc/yum.repos.d/epel.repo /etc/yum.repos.d/epel.repo.backup
mv /etc/yum.repos.d/epel-testing.repo /etc/yum.repos.d/epel-testing.repo.backup
curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo

sudo yum -y install ganglia-gmetad
sudo yum -y install ganglia-web
sudo yum -y install ganglia-gmond

配置启动

  • ganglia配置
sudo vim /etc/httpd/conf.d/ganglia.conf
Alias /ganglia /usr/share/ganglia

<Location /ganglia>
  # Options Indexes FollowSymLinks
  # AllowOverride None
  Require all granted
  # Order deny,allow
  # Deny from all
 Allow from all
  # Require local
  # Require ip 10.1.2.3
  # Require host example.org
</Location>
  • gmetad配置修改数据源
sudo vim /etc/ganglia/gmetad.conf
# A list of machines which service the data source follows, in the 
# format ip:port, or name:port. If a port is not specified then 8649
# (the default gmond port) is assumed.
# default: There is no default value
#
# data_source "my cluster" 10 localhost  my.machine.edu:8649  1.2.3.5:8655
# data_source "my grid" 50 1.3.4.7:8655 grid.org:8651 grid-backup.org:8651
# data_source "another source" 1.3.4.7:8655  1.3.4.8

data_source "hadoop" 192.168.1.12
  • 修改/etc/ganglia/gmond.conf
cluster {
  name = "hadoop"
  owner = "unspecified"
  latlong = "unspecified"
  url = "unspecified"
}

/* The host section describes attributes of the host, like the location */
host {
  location = "unspecified"
}

/* Feel free to specify as many udp_send_channels as you like.  Gmond
   used to only support having a single channel */
udp_send_channel {
  #bind_hostname = yes # Highly recommended, soon to be default.
                       # This option tells gmond to use a source address
                       # that resolves to the machine‘s hostname.  Without
                       # this, the metrics may appear to come from any
                       # interface and the DNS names associated with
                       # those IPs will be used to create the RRDs.
  # mcast_join = 239.2.11.71
  host = 192.168.1.12
  port = 8649
  ttl = 1
}

/* You can specify as many udp_recv_channels as you like as well. */
udp_recv_channel {
  # mcast_join = 239.2.11.71
  port = 8649
  bind = 192.168.1.12
  retry_bind = true
  # Size of the UDP buffer. If you are handling lots of metrics you really
  # should bump it up to e.g. 10MB or even higher.
  # buffer = 10485760
}
  • 关闭selinux,临时关闭
sudo setenforce 0	
  • 修改ganglia权限
sudo chmod -R 777 /var/lib/ganglia
  • 启动ganglia
stytemctl start httpd
stytemctl start gmetad
stytemctl start gmond
  • 访问ganglia页面
http://locahost/ganglia

面试题

如果实现Flume数据传输的监控?

  • 使用ganglia实时监控,或者修改源码通过pushgateway将数据push至普罗米修斯中,通过granfa来监控。

FLume的Source、Sink、Channel的作用?你们Source是什么类型?

Source

  • 收集数据,可以处理各种类型、各种格式的日志数据。

Channel

  • 采集到的数据进行缓存,可以存放到Memory或File中。
  • 使用file channel可以设置多个dataDirs目录,checkpoint和backcheckpoint可以放在不同的磁盘上。

SInk

  • 用于将数据发送到目的地的组件,目的地包括HDFS、Logger、avro等

采用Source类型

  • 监控后台日志:tairDir(支持多文件监控、支持断点续传、支持position容错checkpoint)、exec
  • 监控后台产生日志端口:netcat、exec、tairDir

Flume的Channel Selectors

  • Replicating Channel Selector(default)和Multiplexing Channel Selectors(通过映射选择将不同的 header数据传输到不同的channel)

参数调优

  • Source端增加BatchSize批次大小
  • channel增大event容量并且增大事务容量,根据业务选择memory方式。
  • Sink使用负载均衡的方式,增大batchSize个数,一次处理多条消息。

Flume事务机制

  • Flume使用两个独立的事务分别负责从Source到Channel(put事务),以及从channel到SInk的事务(task事务)。

FLume数据丢失问题

  • Source到Channel不会丢失数据,Channel到Sink也不会丢失数据,但是如果channel是memory类型的会丢失数据,并且agent宕机导致数据丢失或者channel存储数据已满导致SOurce不可写入,未写入的数据丢失。
  • Flume会导致数据重复,因为FLume保证的语义为at least once,比如因为网络原因导致source发送数据到channel一直没有响应,但是数据已经写出了,此时source重发就会导致数据重复。