-
Notifications
You must be signed in to change notification settings - Fork 241
/
Copy pathmain.py
163 lines (128 loc) · 3.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import cv2
import random
import numpy as np
import torch
import argparse
from shutil import copyfile
from src.config import Config
from src.pi_rec import PiRec
def main(mode=None, config=None):
r"""starts the model
Args:
mode (int): 1: train: TODO
2: test
3: refine 2nd phase outputs
4: test with refinement
Hidden mode in tool_draw.py:
5: drawing
6: Refinement
"""
if mode == 5 or mode == 6:
config = load_config_costume(mode, config=config)
else:
config = load_config(mode)
# init environment
if (config.DEVICE == 1 or config.DEVICE is None) and torch.cuda.is_available():
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU)
config.DEVICE = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
else:
config.DEVICE = torch.device("cpu")
print('DEVICE is:', config.DEVICE)
# set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(config.SEED)
torch.cuda.manual_seed_all(config.SEED)
np.random.seed(config.SEED)
random.seed(config.SEED)
# enable the cudnn auto-tuner for hardware.
torch.backends.cudnn.benchmark = True
# build the model and initialize
model = PiRec(config)
model.load()
# model training
if config.MODE == 1:
config.print()
print('\nstart training...\n')
# TODO
# model test
elif config.MODE == 2:
config.print()
print('\nstart testing...\n')
with torch.no_grad():
model.test_G()
# refine the 2nd phase outputs
elif config.MODE == 3:
config.print()
print('\nstart refine...\n')
with torch.no_grad():
model.test_R()
# 2nd + 3rd phase
elif config.MODE == 4:
config.print()
print('\nstart test with refinement...\n')
with torch.no_grad():
model.test_G_R()
elif config.MODE == 5:
config.print()
print('\n############\n###Drawing model loaded.###\n###########\n')
return model
elif config.MODE == 6:
# config.print()
print('\n############\n###Refinement model loaded.###\n###########\n')
return model
def load_config(mode=None):
r"""loads model config
Args:
mode (int): 1: train, 2: test, reads from config file if not specified
"""
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--path', '--checkpoints', type=str,
help='model checkpoints dir path ')
# test mode
if mode == 2 or mode == 3 or mode == 4:
parser.add_argument('--output', type=str, help='path to the output directory')
args = parser.parse_args()
config_path = os.path.join(args.path, 'config.yml')
# create checkpoints path if does't exist
if not os.path.exists(args.path):
os.makedirs(args.path)
# copy config template if does't exist
if not os.path.exists(config_path):
copyfile('./config.yml.example', config_path)
# load config file
config = Config(config_path)
# train mode
if mode == 1:
config.MODE = 1
# TODO
# test mode
elif mode == 2:
config.MODE = 2
if args.output is not None:
config.RESULTS = args.output
# refinement mode
elif mode == 3:
config.MODE = 3
if args.output is not None:
config.RESULTS = args.output
# test with refinement mode
elif mode == 4:
config.MODE = 4
if args.output is not None:
config.RESULTS = args.output
return config
def load_config_costume(mode, config):
r"""loads model costume config
Args:
mode (int): 5: draw
mode (int): 6: refinement
"""
print('load_config_demo----->')
if mode == 5:
config.MODE = 5
elif mode == 6:
config.MODE = 6
return config