-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
702 lines (551 loc) · 27.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import os
import torch
from models import models as networks
from models.models_HiFi import Generator as model_HiFi
from modules import DTW_align, GreedyCTCDecoder, AttrDict, RMSELoss, save_checkpoint
from modules import mel2wav_vocoder, perform_STT
from utils import data_denorm, word_index
import torch.nn as nn
import torch.nn.functional as F
from NeuroTalkDataset import myDataset
import time
import torch.optim.lr_scheduler
import numpy as np
import torchaudio
from torchmetrics import CharErrorRate
import json
import argparse
import wavio
from torch.utils.tensorboard import SummaryWriter
def train(args, train_loader, models, criterions, optimizers, epoch, trainValid=True, inference=False):
'''
:param args: general arguments
:param train_loader: loaded for training/validation/test dataset
:param model: model
:param criterion: loss function
:param optimizer: optimization algo, such as ADAM or SGD
:param epoch: epoch number
:return: losses
'''
(optimizer_g, optimizer_d) = optimizers
# switch to train mode
assert type(models) == tuple, "More than two models should be inputed (generator and discriminator)"
epoch_loss_g = []
epoch_loss_d = []
epoch_acc_g = []
epoch_acc_d = []
epoch_loss_g_ns = []
epoch_loss_d_ns = []
epoch_acc_g_ns = []
epoch_acc_d_ns = []
total_batches = len(train_loader)
for i, (input, target, target_cl, voice, data_info) in enumerate(train_loader):
print("\rBatch [%5d / %5d]"%(i,total_batches), sep=' ', end='', flush=True)
input = input.cuda()
target = target.cuda()
target_cl = target_cl.cuda()
voice = torch.squeeze(voice,dim=-1).cuda()
labels = torch.argmax(target_cl,dim=1)
# extract unseen
idx_unseen=[]
idx_seen=[]
for j in range(len(labels)):
if args.classname[labels[j]] == args.unseen:
idx_unseen.append(j)
else:
idx_seen.append(j)
input_ns = input[idx_unseen]
target_ns = target[idx_unseen]
target_cl_ns = target_cl[idx_unseen]
voice_ns = voice[idx_unseen]
labels_ns = labels[idx_unseen]
data_info_ns = [data_info[0][idx_unseen],data_info[1][idx_unseen]]
input = input[idx_seen]
target = target[idx_seen]
target_cl = target_cl[idx_seen]
voice = voice[idx_seen]
labels = labels[idx_seen]
data_info = [data_info[0][idx_seen],data_info[1][idx_seen]]
# # need to remove
# models = (model_g, model_d, vocoder, model_STT, decoder_STT)
# criterions = (criterion_recon, criterion_ctc, criterion_adv, criterion_cl, CER)
# trainValid = True
# general training
if len(input) != 0:
# train generator
mel_out, e_loss_g, e_acc_g = train_G(args,
input, target, voice, labels,
models, criterions, optimizer_g,
data_info,
trainValid)
epoch_loss_g.append(e_loss_g)
epoch_acc_g.append(e_acc_g)
# train discriminator
e_loss_d, e_acc_d = train_D(args,
mel_out, target, target_cl, labels,
models, criterions, optimizer_d,
trainValid)
epoch_loss_d.append(e_loss_d)
epoch_acc_d.append(e_acc_d)
# Unseen words training
if len(input_ns) != 0 :
# Unseen train generator
mel_out_ns, e_loss_g_ns, e_acc_g_ns = train_G(args,
input_ns, target_ns, voice_ns, labels_ns,
models, criterions, optimizer_g,
data_info_ns,
False)
epoch_loss_g_ns.append(e_loss_g_ns)
epoch_acc_g_ns.append(e_acc_g_ns)
# Unseen train discriminator
e_loss_d_ns, e_acc_d_ns = train_D(args,
mel_out_ns, target_ns, target_cl_ns, labels_ns,
models, criterions, optimizer_d,
False)
epoch_loss_d_ns.append(e_loss_d_ns)
epoch_acc_d_ns.append(e_acc_d_ns)
epoch_loss_g = np.array(epoch_loss_g)
epoch_acc_g = np.array(epoch_acc_g)
epoch_loss_d = np.array(epoch_loss_d)
epoch_acc_d = np.array(epoch_acc_d)
epoch_loss_g_ns = np.array(epoch_loss_g_ns)
epoch_acc_g_ns = np.array(epoch_acc_g_ns)
epoch_loss_d_ns = np.array(epoch_loss_d_ns)
epoch_acc_d_ns = np.array(epoch_acc_d_ns)
args.loss_g = sum(epoch_loss_g[:,0]) / len(epoch_loss_g[:,0])
args.loss_g_recon = sum(epoch_loss_g[:,1]) / len(epoch_loss_g[:,1])
args.loss_g_valid = sum(epoch_loss_g[:,2]) / len(epoch_loss_g[:,2])
args.loss_g_ctc = sum(epoch_loss_g[:,3]) / len(epoch_loss_g[:,3])
args.acc_g_valid = sum(epoch_acc_g[:,0]) / len(epoch_acc_g[:,0])
args.cer_gt = sum(epoch_acc_g[:,1]) / len(epoch_acc_g[:,1])
args.cer_recon = sum(epoch_acc_g[:,2]) / len(epoch_acc_g[:,2])
args.loss_d = sum(epoch_loss_d[:,0]) / len(epoch_loss_d[:,0])
args.loss_d_valid = sum(epoch_loss_d[:,1]) / len(epoch_loss_d[:,1])
args.loss_d_cl = sum(epoch_loss_d[:,2]) / len(epoch_loss_d[:,2])
args.acc_d_real = sum(epoch_acc_d[:,0]) / len(epoch_acc_d[:,0])
args.acc_d_fake = sum(epoch_acc_d[:,1]) / len(epoch_acc_d[:,1])
args.acc_cl_real = sum(epoch_acc_d[:,2]) / len(epoch_acc_d[:,2])
args.acc_cl_fake = sum(epoch_acc_d[:,3]) / len(epoch_acc_d[:,3])
# Unseen
args.loss_g_ns = sum(epoch_loss_g_ns[:,0]) / len(epoch_loss_g_ns[:,0])
args.loss_g_recon_ns = sum(epoch_loss_g_ns[:,1]) / len(epoch_loss_g_ns[:,1])
args.loss_g_valid_ns = sum(epoch_loss_g_ns[:,2]) / len(epoch_loss_g_ns[:,2])
args.loss_g_ctc_ns = sum(epoch_loss_g_ns[:,3]) / len(epoch_loss_g_ns[:,3])
args.acc_g_valid_ns = sum(epoch_acc_g_ns[:,0]) / len(epoch_acc_g_ns[:,0])
args.cer_gt_ns = sum(epoch_acc_g_ns[:,1]) / len(epoch_acc_g_ns[:,1])
args.cer_recon_ns = sum(epoch_acc_g_ns[:,2]) / len(epoch_acc_g_ns[:,2])
args.loss_d_ns = sum(epoch_loss_d_ns[:,0]) / len(epoch_loss_d_ns[:,0])
args.loss_d_valid_ns = sum(epoch_loss_d_ns[:,1]) / len(epoch_loss_d_ns[:,1])
args.loss_d_cl_ns = sum(epoch_loss_d_ns[:,2]) / len(epoch_loss_d_ns[:,2])
args.acc_d_real_ns = sum(epoch_acc_d_ns[:,0]) / len(epoch_acc_d_ns[:,0])
args.acc_d_fake_ns = sum(epoch_acc_d_ns[:,1]) / len(epoch_acc_d_ns[:,1])
args.acc_cl_real_ns = sum(epoch_acc_d_ns[:,2]) / len(epoch_acc_d_ns[:,2])
args.acc_cl_fake_ns = sum(epoch_acc_d_ns[:,3]) / len(epoch_acc_d_ns[:,3])
# tensorboard
if trainValid:
tag = 'train'
else:
tag = 'valid'
if not inference:
args.writer.add_scalar("Loss_G/{}".format(tag), args.loss_g, epoch)
args.writer.add_scalar("CER/{}".format(tag), args.cer_recon, epoch)
args.writer.add_scalar("Loss_G_recon/{}".format(tag), args.loss_g_recon, epoch)
args.writer.add_scalar("Loss_G_valid/{}".format(tag), args.loss_g_valid, epoch)
args.writer.add_scalar("Loss_G_ctc/{}".format(tag), args.loss_g_ctc, epoch)
args.writer.add_scalar("ACC_D_real/{}".format(tag), args.acc_d_real, epoch)
args.writer.add_scalar("ACC_D_fake/{}".format(tag), args.acc_d_fake, epoch)
args.writer.add_scalar("Loss_G_unseen/{}".format(tag), args.loss_g_ns, epoch)
args.writer.add_scalar("CER_unseen/{}".format(tag), args.cer_recon_ns, epoch)
print('\n[%3d/%3d] CER-gt: %.4f CER-recon: %.4f / ACC_R: %.4f ACC_F: %.4f / g-RMSE: %.4f g-lossValid: %.4f g-lossCTC: %.4f'
% (i, total_batches,
args.cer_gt, args.cer_recon,
args.acc_d_real, args.acc_d_fake,
args.loss_g_recon, args.loss_g_valid, args.loss_g_ctc))
return (args.loss_g, args.loss_g_recon, args.loss_g_valid, args.loss_g_ctc, args.acc_g_valid, args.cer_gt, args.cer_recon,
args.loss_d, args.acc_d_real, args.acc_d_fake)
def train_G(args, input, target, voice, labels, models, criterions, optimizer_g, data_info, trainValid):
(model_g, model_d, vocoder, model_STT, decoder_STT) = models
(criterion_recon, criterion_ctc, criterion_adv, _, CER) = criterions
if trainValid:
model_g.train()
model_d.train()
vocoder.train()
model_STT.train()
else:
model_g.eval()
model_d.eval()
vocoder.eval()
model_STT.eval()
# Adversarial ground truths 1:real, 0: fake
valid = torch.ones((len(input), 1), dtype=torch.float32).cuda()
###############################
# Train Generator
###############################
if trainValid:
for p in model_g.parameters():
p.requires_grad_(True) # unfreeze G
for p in model_d.parameters():
p.requires_grad_(False) # freeze D
for p in vocoder.parameters():
p.requires_grad_(False) # freeze vocoder
for p in model_STT.parameters():
p.requires_grad_(False) # freeze model_STT
# set zero grad
optimizer_g.zero_grad()
# Run Generator
output = model_g(input)
else:
with torch.no_grad():
# run generator
output = model_g(input)
# DTW
mel_out = output.clone()
mel_out = DTW_align(mel_out, target)
# Run Discriminator
g_valid, _ = model_d(mel_out)
# generator loss
loss_recon = criterion_recon(mel_out, target)
# GAN loss
loss_valid = criterion_adv(g_valid, valid)
# accuracy args.l_g = h_g.l_g
acc_g_valid = (g_valid.round() == valid).float().mean()
###############################
# Loss from Vocoder - STT
###############################
# out_DTW
target_denorm = data_denorm(target, data_info[0], data_info[1])
output_denorm = data_denorm(mel_out, data_info[0], data_info[1])
gt_label=[]
gt_label_idx=[]
gt_length=[]
for j in range(len(target)):
gt_label.append(args.word_label[labels[j].item()])
gt_label_idx.append(args.word_index[labels[j].item()])
gt_length.append(args.word_length[labels[j].item()])
gt_label_idx = torch.tensor(np.array(gt_label_idx),dtype=torch.int64)
gt_length = torch.tensor(gt_length,dtype=torch.int64)
# target
##### HiFi-GAN
wav_target = vocoder(target_denorm)
wav_target = torch.reshape(wav_target, (len(wav_target),wav_target.shape[-1]))
#### resampling
wav_target = torchaudio.functional.resample(wav_target, args.sample_rate_mel, args.sample_rate_STT)
if wav_target.shape[1] != voice.shape[1]:
p = voice.shape[1] - wav_target.shape[1]
p_s = p//2
p_e = p-p_s
wav_target = F.pad(wav_target, (p_s,p_e))
# recon
##### HiFi-GAN
wav_recon = vocoder(output_denorm)
wav_recon = torch.reshape(wav_recon, (len(wav_recon),wav_recon.shape[-1]))
#### resampling
wav_recon = torchaudio.functional.resample(wav_recon, args.sample_rate_mel, args.sample_rate_STT)
if wav_recon.shape[1] != voice.shape[1]:
p = voice.shape[1] - wav_recon.shape[1]
p_s = p//2
p_e = p-p_s
wav_recon = F.pad(wav_recon, (p_s,p_e))
##### STT Wav2Vec 2.0
emission_gt, _ = model_STT(voice)
emission_recon, _ = model_STT(wav_recon)
# CTC loss
input_lengths = torch.full(size=(emission_gt.size(dim=0),), fill_value=emission_gt.size(dim=1), dtype=torch.long)
emission_recon_ = emission_recon.log_softmax(2)
loss_ctc = criterion_ctc(emission_recon_.transpose(0, 1), gt_label_idx, input_lengths, gt_length)
# total generator loss
loss_g = args.l_g[0] * loss_recon + args.l_g[1] * loss_valid + args.l_g[2] * loss_ctc
# decoder STT
transcript_gt = []
transcript_recon = []
for j in range(len(voice)):
transcript = decoder_STT(emission_gt[j])
transcript_gt.append(transcript)
transcript = decoder_STT(emission_recon[j])
transcript_recon.append(transcript)
cer_gt = CER(transcript_gt, gt_label)
cer_recon = CER(transcript_recon, gt_label)
if trainValid:
loss_g.backward()
optimizer_g.step()
e_loss_g = (loss_g.item(), loss_recon.item(), loss_valid.item(), loss_ctc.item())
e_acc_g = (acc_g_valid.item(), cer_gt.item(), cer_recon.item())
return mel_out, e_loss_g, e_acc_g
def train_D(args, mel_out, target, target_cl, labels, models, criterions, optimizer_d, trainValid):
(_, model_d, _, _, _) = models
(_, _, criterion_adv, criterion_cl, _) = criterions
if trainValid:
model_d.train()
else:
model_d.eval()
# Adversarial ground truths 1:real, 0: fake
valid = torch.ones((len(mel_out), 1), dtype=torch.float32).cuda()
fake = torch.zeros((len(mel_out), 1), dtype=torch.float32).cuda()
###############################
# Train Discriminator
###############################
if trainValid:
if args.pretrain and args.prefreeze:
for total_ct, _ in enumerate(model_d.children()):
ct=0
for ct, child in enumerate(model_d.children()):
if ct > total_ct-1: # unfreeze classifier
for param in child.parameters():
param.requires_grad = True # unfreeze D
else:
for p in model_d.parameters():
p.requires_grad_(True) # unfreeze D
# set zero grad
optimizer_d.zero_grad()
# run model cl
real_valid, real_cl = model_d(target)
fake_valid, fake_cl = model_d(mel_out.detach())
loss_d_real_valid = criterion_adv(real_valid, valid)
loss_d_fake_valid = criterion_adv(fake_valid, fake)
loss_d_real_cl = criterion_cl(real_cl, target_cl)
loss_d_valid = 0.5 * (loss_d_real_valid + loss_d_fake_valid)
loss_d_cl = loss_d_real_cl
loss_d = args.l_d[0] * loss_d_cl + args.l_d[1] * loss_d_valid
# accuracy
acc_d_real = (real_valid.round() == valid).float().mean()
acc_d_fake = (fake_valid.round() == fake).float().mean()
preds_real = torch.argmax(real_cl,dim=1)
acc_cl_real = (preds_real == labels).float().mean()
preds_fake = torch.argmax(fake_cl,dim=1)
acc_cl_fake = (preds_fake == labels).float().mean()
if trainValid:
loss_d.backward()
optimizer_d.step()
e_loss_d = (loss_d.item(), loss_d_valid.item(), loss_d_cl.item())
e_acc_d = (acc_d_real.item(), acc_d_fake.item(), acc_cl_real.item(), acc_cl_fake.item())
return e_loss_d, e_acc_d
def saveData(args, test_loader, models, epoch, losses):
model_g = models[0].eval()
# model_d = models[1].eval()
vocoder = models[2].eval()
model_STT = models[3].eval()
decoder_STT = models[4]
input, target, target_cl, voice, data_info = next(iter(test_loader))
input = input.cuda()
target = target.cuda()
voice = torch.squeeze(voice,dim=-1).cuda()
labels = torch.argmax(target_cl,dim=1)
with torch.no_grad():
# run the mdoel
output = model_g(input)
mel_out = output
output_denorm = data_denorm(mel_out, data_info[0], data_info[1])
wav_recon = mel2wav_vocoder(torch.unsqueeze(output_denorm[0],dim=0), vocoder, 1)
wav_recon = torch.reshape(wav_recon, (len(wav_recon),wav_recon.shape[-1]))
wav_recon = torchaudio.functional.resample(wav_recon, args.sample_rate_mel, args.sample_rate_STT)
if wav_recon.shape[1] != voice.shape[1]:
p = voice.shape[1] - wav_recon.shape[1]
p_s = p//2
p_e = p-p_s
wav_recon = F.pad(wav_recon, (p_s,p_e))
##### STT Wav2Vec 2.0
gt_label = args.word_label[labels[0].item()]
transcript_recon = perform_STT(wav_recon, model_STT, decoder_STT, gt_label, 1)
# save
wav_recon = np.squeeze(wav_recon.cpu().detach().numpy())
str_tar = args.word_label[labels[0].item()].replace("|", ",")
str_tar = str_tar.replace(" ", ",")
str_pred = transcript_recon[0].replace("|", ",")
str_pred = str_pred.replace(" ", ",")
title = "Tar_{}-Pred_{}".format(str_tar, str_pred)
wavio.write(args.savevoice + '/e{}_{}.wav'.format(str(str(epoch)), title), wav_recon, args.sample_rate_STT, sampwidth=1)
def main(args):
device = torch.device(f'cuda:{args.gpuNum[0]}' if torch.cuda.is_available() else "cpu")
torch.cuda.set_device(device) # change allocation of current GPU
print ('Current cuda device: {} '.format(torch.cuda.current_device())) # check
print('The number of available GPU:{}'.format(torch.cuda.device_count()))
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
# define generator
config_file = os.path.join(args.model_config, 'config_g.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h_g = AttrDict(json_config)
model_g = networks.Generator(h_g).cuda()
args.sample_rate_mel = args.sampling_rate
# define discriminator
config_file = os.path.join(args.model_config, 'config_d.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h_d = AttrDict(json_config)
model_d = networks.Discriminator(h_d).cuda()
# vocoder HiFiGAN
# LJ_FT_T2_V3/generator_v3,
config_file = os.path.join(os.path.split(args.vocoder_pre)[0], 'config.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
vocoder = model_HiFi(h).cuda()
state_dict_g = torch.load(args.vocoder_pre) #, map_location=args.device)
vocoder.load_state_dict(state_dict_g['generator'])
# STT Wav2Vec
bundle = torchaudio.pipelines.HUBERT_ASR_LARGE
model_STT = bundle.get_model().cuda()
args.sample_rate_STT = bundle.sample_rate
decoder_STT = GreedyCTCDecoder(labels=bundle.get_labels())
args.word_index, args.word_length = word_index(args.word_label, bundle)
# Parallel setting
model_g = nn.DataParallel(model_g, device_ids=args.gpuNum)
model_d = nn.DataParallel(model_d, device_ids=args.gpuNum)
vocoder = nn.DataParallel(vocoder, device_ids=args.gpuNum)
model_STT = nn.DataParallel(model_STT, device_ids=args.gpuNum)
# loss function
criterion_recon = RMSELoss().cuda()
criterion_adv = nn.BCELoss().cuda()
criterion_ctc = nn.CTCLoss().cuda()
criterion_cl = nn.CrossEntropyLoss().cuda()
CER = CharErrorRate().cuda()
# optimizer
optimizer_g = torch.optim.AdamW(model_g.parameters(), lr=args.lr_g, betas=(0.8, 0.99), weight_decay=0.01)
optimizer_d = torch.optim.AdamW(model_d.parameters(), lr=args.lr_d, betas=(0.8, 0.99), weight_decay=0.01)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optimizer_g, gamma=args.lr_g_decay, last_epoch=-1)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optimizer_d, gamma=args.lr_d_decay, last_epoch=-1)
# create the directory if not exist
if not os.path.exists(args.logDir):
os.mkdir(args.logDir)
subDir = os.path.join(args.logDir, args.sub)
if not os.path.exists(subDir):
os.mkdir(subDir)
saveDir = os.path.join(args.logDir, args.sub, args.task)
if not os.path.exists(saveDir):
os.mkdir(saveDir)
args.savevoice = saveDir + '/epovoice'
if not os.path.exists(args.savevoice):
os.mkdir(args.savevoice)
args.savemodel = saveDir + '/savemodel'
if not os.path.exists(args.savemodel):
os.mkdir(args.savemodel)
args.logs = saveDir + '/logs'
if not os.path.exists(args.logs):
os.mkdir(args.logs)
# Load trained model
start_epoch = 0
if args.pretrain:
loc_g = os.path.join(args.trained_model, args.sub, 'BEST_checkpoint_g.pt')
loc_d = os.path.join(args.trained_model, args.sub, 'BEST_checkpoint_d.pt')
if os.path.isfile(loc_g):
print("=> loading checkpoint '{}'".format(loc_g))
checkpoint_g = torch.load(loc_g, map_location='cpu')
model_g.load_state_dict(checkpoint_g['state_dict'])
else:
print("=> no checkpoint found at '{}'".format(loc_g))
if os.path.isfile(loc_d):
print("=> loading checkpoint '{}'".format(loc_d))
checkpoint_d = torch.load(loc_d, map_location='cpu')
model_d.load_state_dict(checkpoint_d['state_dict'])
else:
print("=> no checkpoint found at '{}'".format(loc_d))
if args.resume:
loc_g = os.path.join(args.savemodel, 'checkpoint_g.pt')
loc_d = os.path.join(args.savemodel, 'checkpoint_d.pt')
if os.path.isfile(loc_g):
print("=> loading checkpoint '{}'".format(loc_g))
checkpoint_g = torch.load(loc_g, map_location='cpu')
model_g.load_state_dict(checkpoint_g['state_dict'])
start_epoch = checkpoint_g['epoch'] + 1
else:
print("=> no checkpoint found at '{}'".format(loc_g))
if os.path.isfile(loc_d):
print("=> loading checkpoint '{}'".format(loc_d))
checkpoint_d = torch.load(loc_d, map_location='cpu')
model_d.load_state_dict(checkpoint_d['state_dict'])
else:
print("=> no checkpoint found at '{}'".format(loc_d))
# Tensorboard setting
args.writer = SummaryWriter(args.logs)
# Data loader define
generator = torch.Generator().manual_seed(args.seed)
trainset = myDataset(mode=0, data=args.dataLoc+'/'+args.sub, task=args.task, recon=args.recon)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, generator=generator, num_workers=4*len(args.gpuNum), pin_memory=True)
valset = myDataset(mode=2, data=args.dataLoc+'/'+args.sub, task=args.task, recon=args.recon)
val_loader = torch.utils.data.DataLoader(
valset, batch_size=args.batch_size, shuffle=True, generator=generator, num_workers=4*len(args.gpuNum), pin_memory=True)
epoch = start_epoch
lr_g = 0
lr_d = 0
best_loss = 1000
is_best = False
epochs_since_improvement = 0
for epoch in range(start_epoch, args.max_epochs):
start_time = time.time()
for param_group in optimizer_g.param_groups:
lr_g = param_group['lr']
for param_group in optimizer_d.param_groups:
lr_d = param_group['lr']
scheduler_g.step(epoch)
scheduler_d.step(epoch)
print("Epoch : %d/%d" %(epoch, args.max_epochs) )
print("Learning rate for G: %.9f" %lr_g)
print("Learning rate for D: %.9f" %lr_d)
Tr_losses = train(args, train_loader,
(model_g, model_d, vocoder, model_STT, decoder_STT),
(criterion_recon, criterion_ctc, criterion_adv, criterion_cl, CER),
(optimizer_g, optimizer_d),
epoch,
True)
Val_losses = train(args, val_loader,
(model_g, model_d, vocoder, model_STT, decoder_STT),
(criterion_recon, criterion_ctc, criterion_adv, criterion_cl, CER),
([],[]),
epoch,
False)
# Save checkpoint
state_g = {'arch': str(model_g),
'state_dict': model_g.state_dict(),
'epoch': epoch,
'optimizer_state_dict': optimizer_g.state_dict()}
state_d = {'arch': str(model_d),
'state_dict': model_d.state_dict(),
'epoch': epoch,
'optimizer_state_dict': optimizer_d.state_dict()}
# Did validation loss improve?
loss_total = Val_losses[0]
is_best = loss_total < best_loss
best_loss = min(loss_total, best_loss)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
save_checkpoint(state_g, is_best, args.savemodel, 'checkpoint_g.pt')
save_checkpoint(state_d, is_best, args.savemodel, 'checkpoint_d.pt')
saveData(args, val_loader, (model_g, model_d, vocoder, model_STT, decoder_STT), epoch, (Tr_losses,Val_losses))
time_taken = time.time() - start_time
print("Time: %.2f\n"%time_taken)
args.writer.flush()
if __name__ == '__main__':
dataDir = './dataset'
logDir = './TrainResult'
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--vocoder_pre', type=str, default='./pretrained_model/UNIVERSAL_V1/g_02500000', help='pretrained vocoder file path')
parser.add_argument('--trained_model', type=str, default='./pretrained_model', help='trained model for G & D folder path')
parser.add_argument('--model_config', type=str, default='./models', help='config for G & D folder path')
parser.add_argument('--dataLoc', type=str, default=dataDir)
parser.add_argument('--config', type=str, default='./config.json')
parser.add_argument('--logDir', type=str, default=logDir)
parser.add_argument('--resume', type=bool, default=False)
parser.add_argument('--pretrain', type=bool, default=False)
parser.add_argument('--prefreeze', type=bool, default=False)
parser.add_argument('--gpuNum', type=list, default=[0])
parser.add_argument('--batch_size', type=int, default=26)
parser.add_argument('--sub', type=str, default='sub1')
parser.add_argument('--task', type=str, default='SpokenEEG')
parser.add_argument('--recon', type=str, default='Y_mel')
parser.add_argument('--unseen', type=str, default='stop')
args = parser.parse_args()
with open(args.config) as f:
t_args = argparse.Namespace()
t_args.__dict__.update(json.load(f))
args = parser.parse_args(namespace=t_args)
main(args)