This repository has been archived by the owner on Nov 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathinfer.py
306 lines (242 loc) · 10.8 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import wandb
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import numpy as np
import gc
import pytorch_lightning as pl
import numpy as np
import scipy.stats as st
from torch.utils.data import DataLoader, Dataset
import os
import gc
import random
import numpy as np
from tqdm.auto import tqdm
import segmentation_models_pytorch as smp
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from i3dallnl import InceptionI3d
from PIL import Image
import re
class CFG:
# ============== comp exp name =============
comp_name = 'vesuvius'
comp_dir_path = './'
comp_folder_name = './'
# comp_dataset_path = f'{comp_dir_path}datasets/{comp_folder_name}/'
comp_dataset_path = f'./'
exp_name = 'pretraining_all'
in_chans = 33 # 65
valid_id = 2
print_freq = 50
num_workers = 32
size = 64
tile_size = 64
stride = tile_size // 2
valid_batch_size = 32
outputs_path = f'/home/ubuntu/Vesuvius-GrandPrize/outputs/{comp_name}/{exp_name}/'
model_dir = outputs_path + \
f'{comp_name}-models/'
figures_dir = outputs_path + 'figures/'
log_dir = outputs_path + 'logs/'
log_path = log_dir + f'{exp_name}.txt'
def set_seed(seed=42, cudnn_deterministic=True):
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = cudnn_deterministic
torch.backends.cudnn.benchmark = False
set_seed()
# 2d gaussian kernel
def gkern(kernlen=21, nsig=3):
x = np.linspace(-nsig, nsig, kernlen+1)
kern1d = np.diff(st.norm.cdf(x))
kern2d = np.outer(kern1d, kern1d)
return kern2d / kern2d.sum()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def read_image_mask(fragment_id, start_idx=18, end_idx=38):
images = []
mid = 65 // 2
idxs = range(start_idx, end_idx)
for i in idxs:
p = f"/home/ubuntu/scroll_data/scroll_inkdetection/dataset_flat/raw_fragments/{fragment_id}/layers/{i:02}.tif"
# print(os.path.exists(p))
image = cv2.imread(p, 0)
pad0 = (256 - image.shape[0] % 256)
pad1 = (256 - image.shape[1] % 256)
image = np.pad(image, [(0, pad0), (0, pad1)], constant_values=0)
image = np.clip(image, 0, 200)
images.append(image)
images = np.stack(images, axis=2)
if str(fragment_id) in ['20230701020044','verso','20230901184804','20230901234823','20230531193658','20231007101615','20231005123333','20231011144857','20230522215721', '20230919113918', '20230625171244','20231022170900','20231012173610','20231016151000','20231224042141', '20231222233538']:
images = images[:,:,::-1]
fragment_mask = np.zeros(images[0].shape)
if os.path.exists(f'/home/ubuntu/scroll_data/scroll_inkdetection/dataset_flat/raw_fragments/{fragment_id}/{re.sub("[^0-9]", "", fragment_id)}_mask.png'):
fragment_mask=cv2.imread(f"/home/ubuntu/scroll_data/scroll_inkdetection/dataset_flat/raw_fragments/{fragment_id}/{re.sub('[^0-9]', '', fragment_id)}_mask.png", 0)
fragment_mask = np.pad(fragment_mask, [(0, pad0), (0, pad1)], constant_values=0)
if os.path.exists(f'/home/ubuntu/scroll_data/scroll_inkdetection/dataset_flat/raw_fragments/{fragment_id}/out_mask.png'):
fragment_mask=cv2.imread(f"/home/ubuntu/scroll_data/scroll_inkdetection/dataset_flat/raw_fragments/{fragment_id}/out_mask.png", 0)
fragment_mask = np.pad(fragment_mask, [(0, pad0), (0, pad1)], constant_values=0)
return images,fragment_mask
def get_img_splits(fragment_id, start, end, rotation=0):
images = []
xyxys = []
image, fragment_mask = read_image_mask(fragment_id, start, end)
x1_list = list(range(0, image.shape[1]-CFG.tile_size+1, CFG.stride))
y1_list = list(range(0, image.shape[0]-CFG.tile_size+1, CFG.stride))
for y1 in tqdm(y1_list):
for x1 in x1_list:
y2 = y1 + CFG.tile_size
x2 = x1 + CFG.tile_size
if not np.any(fragment_mask[y1:y2, x1:x2]==0):
images.append(image[y1:y2, x1:x2])
xyxys.append([x1, y1, x2, y2])
test_dataset = CustomDatasetTest(images, np.stack(xyxys), CFG, transform=A.Compose([
A.Resize(CFG.size, CFG.size),
A.Normalize(
mean= [0] * CFG.in_chans,
std= [1] * CFG.in_chans
),
ToTensorV2(transpose_mask=True),
]))
test_loader = DataLoader(test_dataset,
batch_size=CFG.valid_batch_size,
shuffle=False,
num_workers=CFG.num_workers,
pin_memory=True,
drop_last=False,
)
return test_loader, np.stack(xyxys),(image.shape[0],image.shape[1]), fragment_mask
class CustomDatasetTest(Dataset):
def __init__(self, images,xyxys, cfg, transform=None):
self.images = images
self.xyxys = xyxys
self.cfg = cfg
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
xy = self.xyxys[idx]
if self.transform:
data = self.transform(image=image)
image = data['image'].unsqueeze(0)
return image,xy
class Decoder(nn.Module):
def __init__(self, encoder_dims, upscale):
super().__init__()
self.convs = nn.ModuleList([
nn.Sequential(
nn.Conv2d(encoder_dims[i]+encoder_dims[i-1], encoder_dims[i-1], 3, 1, 1, bias=False),
nn.BatchNorm2d(encoder_dims[i-1]),
nn.ReLU(inplace=True)
) for i in range(1, len(encoder_dims))])
self.logit = nn.Conv2d(encoder_dims[0], 1, 1, 1, 0)
self.up = nn.Upsample(scale_factor=upscale, mode="bilinear")
def forward(self, feature_maps):
for i in range(len(feature_maps)-1, 0, -1):
f_up = F.interpolate(feature_maps[i], scale_factor=2, mode="bilinear")
f = torch.cat([feature_maps[i - 1], f_up], dim=1)
f_down = self.convs[i - 1](f)
feature_maps[i-1] = f_down
x = self.logit(feature_maps[0])
mask = self.up(x)
return mask
class RegressionPLModel(pl.LightningModule):
def __init__(self, pred_shape, size=224, enc='', with_norm=False):
super(RegressionPLModel, self).__init__()
self.save_hyperparameters()
self.mask_pred = np.zeros(self.hparams.pred_shape)
self.mask_count = np.zeros(self.hparams.pred_shape)
self.loss_func1 = smp.losses.DiceLoss(mode='binary')
self.loss_func2 = smp.losses.SoftBCEWithLogitsLoss(smooth_factor=0.15)
self.loss_func = lambda x,y:0.5 * self.loss_func1(x,y)+0.5*self.loss_func2(x,y)
self.backbone = InceptionI3d(in_channels=1, num_classes=512, non_local=True)
self.decoder = Decoder(encoder_dims=[x.size(1) for x in self.backbone(torch.rand(1,1,20,256,256))], upscale=1)
if self.hparams.with_norm:
self.normalization=nn.BatchNorm3d(num_features=1)
def forward(self, x):
if x.ndim==4:
x = x[:,None]
if self.hparams.with_norm:
x = self.normalization(x)
feat_maps = self.backbone(x)
feat_maps_pooled = [torch.max(f, dim=2)[0] for f in feat_maps]
pred_mask = self.decoder(feat_maps_pooled)
return pred_mask
# Other functions are not overidden as they are unused in inference
def TTA(x:torch.Tensor,model:nn.Module):
shape=x.shape
x = [x,*[torch.rot90(x,k=i,dims=(-2,-1)) for i in range(1,4)],]
x = torch.cat(x,dim=0)
x = model(x)
x = x.reshape(4,shape[0],CFG.size//4,CFG.size//4)
x = [torch.rot90(x[i],k=-i,dims=(-2,-1)) for i in range(4)]
x = torch.stack(x,dim=0)
return x.mean(0)
def predict_fn(test_loader, model, device, test_xyxys, pred_shape):
mask_pred = np.zeros(pred_shape)
mask_count = np.zeros(pred_shape)
kernel = gkern(CFG.size, 1)
kernel = kernel / kernel.max()
model.eval()
for _, (images, xys) in tqdm(enumerate(test_loader),total=len(test_loader)):
images = images.to(device)
with torch.no_grad():
with torch.autocast(device_type="cuda"):
y_preds = model(images)
# y_preds =TTA(images,model)
y_preds = torch.sigmoid(y_preds).to('cpu')
for i, (x1, y1, x2, y2) in enumerate(xys):
mask_pred[y1:y2, x1:x2] += np.multiply(F.interpolate(y_preds[i].unsqueeze(0).float(), scale_factor=4, mode='bilinear').squeeze(0).squeeze(0).numpy(),kernel)
mask_count[y1:y2, x1:x2] += np.ones((CFG.size, CFG.size))
mask_pred /= mask_count
return mask_pred, mask_count > 0 # Return mask of what parts of the image are not part of the fragment
def run_on_fragment(fragment_id, model_name="wild12_64_20230820203112_0_fr_i3depoch=3.ckpt", use_wandb=True):
model = RegressionPLModel.load_from_checkpoint(CFG.model_dir + model_name,strict=False)
model.cuda()
model.eval()
if use_wandb:
wandb.login()
wandb.init(
# Set the project where this run will be logged
project="vesivus",
# We pass a run name (otherwise it’ll be randomly assigned, like sunshine-lollypop-10)
name=f"ALL_scrolls_tta_{model_name}",
)
# for fragment_id in ['20230901184804','20230901234823','20230902141231','20230903193206','20230528112855','20230519215753','20230525200512','20230528112855','20230531121653','20230601204340','20230609123853','20230620230617','20230620230619','20230828154913','20230902141231','20230711201157']:
preds=[]
start_f = 15
end_f = start_f + CFG.in_chans
test_loader, test_xyxz, test_shape, _ = get_img_splits(fragment_id, start_f, end_f, 0)
mask_pred, mask = predict_fn(test_loader, model, device, test_xyxz, test_shape)
mask_pred = np.clip(np.nan_to_num(mask_pred), a_min=0, a_max=1)
mask_pred /= mask_pred.max()
preds.append(mask_pred)
img = wandb.Image(
preds[0],
caption=f"{fragment_id}"
)
if use_wandb:
wandb.log({'predictions':img})
# memory cleanup
gc.collect()
del mask_pred, test_loader, model
torch.cuda.empty_cache()
gc.collect()
if use_wandb:
wandb.finish()
return preds[0], mask
image_path = lambda id: f"Vesuvius-GrandPrize/outputs/vesuvius/pretraining_all/figures/{id}.png"
if __name__ == '__main__':
# If running as a standalone script, run inference on a fragment
fragment_image, _ = run_on_fragment("working_4039_4898_8091")
# Save that fragment's image generation
fragment_image = Image.fromarray((fragment_image * 255).astype(np.uint8))
fragment_image.save(image_path("working_4039_4898_8091"))