-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy patheval.py
183 lines (146 loc) · 6.13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import os
from copy import deepcopy
import torch
from evaluator.voc_evaluator import VOCAPIEvaluator
from evaluator.coco_evaluator import COCOAPIEvaluator
from evaluator.crowdhuman_evaluator import CrowdHumanEvaluator
from evaluator.widerface_evaluator import WiderFaceEvaluator
from evaluator.customed_evaluator import CustomedEvaluator
# load transform
from dataset.build import build_transform
# load some utils
from utils.misc import load_weight
from utils.misc import compute_flops
from config import build_dataset_config, build_model_config, build_trans_config
from models.detectors import build_model
def parse_args():
parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
# Basic setting
parser.add_argument('-size', '--img_size', default=640, type=int,
help='the max size of input image')
parser.add_argument('--cuda', action='store_true', default=False,
help='Use cuda')
# Model setting
parser.add_argument('-m', '--model', default='yolov1', type=str,
help='build yolo')
parser.add_argument('--weight', default=None,
type=str, help='Trained state_dict file path to open')
parser.add_argument('-ct', '--conf_thresh', default=0.001, type=float,
help='confidence threshold')
parser.add_argument('-nt', '--nms_thresh', default=0.7, type=float,
help='NMS threshold')
parser.add_argument('--topk', default=1000, type=int,
help='topk candidates dets of each level before NMS')
parser.add_argument("--no_decode", action="store_true", default=False,
help="not decode in inference or yes")
parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
help='fuse Conv & BN')
parser.add_argument('--no_multi_labels', action='store_true', default=False,
help='Perform post-process with multi-labels trick.')
parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
help='Perform NMS operations regardless of category.')
# Data setting
parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
help='data root')
parser.add_argument('-d', '--dataset', default='coco',
help='coco, voc.')
parser.add_argument('--mosaic', default=None, type=float,
help='mosaic augmentation.')
parser.add_argument('--mixup', default=None, type=float,
help='mixup augmentation.')
parser.add_argument('--load_cache', action='store_true', default=False,
help='load data into memory.')
# TTA
parser.add_argument('-tta', '--test_aug', action='store_true', default=False,
help='use test augmentation.')
return parser.parse_args()
def voc_test(model, data_dir, device, transform):
evaluator = VOCAPIEvaluator(data_dir=data_dir,
device=device,
transform=transform,
display=True)
# VOC evaluation
evaluator.evaluate(model)
def coco_test(model, data_dir, device, transform, test=False):
if test:
# test-dev
print('test on test-dev 2017')
evaluator = COCOAPIEvaluator(
data_dir=data_dir,
device=device,
testset=True,
transform=transform)
else:
# eval
evaluator = COCOAPIEvaluator(
data_dir=data_dir,
device=device,
testset=False,
transform=transform)
# COCO evaluation
evaluator.evaluate(model)
def crowdhuman_test(model, data_dir, device, transform):
evaluator = CrowdHumanEvaluator(
data_dir=data_dir,
device=device,
image_set='val',
transform=transform)
# WiderFace evaluation
evaluator.evaluate(model)
def widerface_test(model, data_dir, device, transform):
evaluator = WiderFaceEvaluator(
data_dir=data_dir,
device=device,
image_set='val',
transform=transform)
# WiderFace evaluation
evaluator.evaluate(model)
def customed_test(model, data_dir, device, transform):
evaluator = CustomedEvaluator(
data_dir=data_dir,
device=device,
image_set='val',
transform=transform)
# WiderFace evaluation
evaluator.evaluate(model)
if __name__ == '__main__':
args = parse_args()
# cuda
if args.cuda:
print('use cuda')
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Dataset & Model Config
data_cfg = build_dataset_config(args)
model_cfg = build_model_config(args)
trans_cfg = build_trans_config(model_cfg['trans_type'])
data_dir = os.path.join(args.root, data_cfg['data_name'])
num_classes = data_cfg['num_classes']
# build model
model = build_model(args, model_cfg, device, num_classes, False)
# load trained weight
model = load_weight(model, args.weight, args.fuse_conv_bn)
model.to(device).eval()
# compute FLOPs and Params
model_copy = deepcopy(model)
model_copy.trainable = False
model_copy.eval()
compute_flops(
model=model_copy,
img_size=args.img_size,
device=device)
del model_copy
# transform
val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
# evaluation
with torch.no_grad():
if args.dataset == 'voc':
voc_test(model, data_dir, device, val_transform)
elif args.dataset == 'coco-val' or args.dataset == 'coco':
coco_test(model, data_dir, device, val_transform, test=False)
elif args.dataset == 'coco-test':
coco_test(model, data_dir, device, val_transform, test=True)
elif args.dataset == 'ourdataset':
customed_test(model, data_dir, device, val_transform)