-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathmain.py
executable file
·233 lines (173 loc) · 5.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/home/hangyu5/anaconda2/envs/py3dl/bin/python
import argparse
import argh
from time import time
from contextlib import contextmanager
import os
import random
import re
import sys
from collections import namedtuple
import logging
import daiquiri
daiquiri.setup(level=logging.DEBUG)
logger = daiquiri.getLogger(__name__)
_PATH_ = os.path.dirname(os.path.dirname(__file__))
if _PATH_ not in sys.path:
sys.path.append(_PATH_)
from config import FLAGS, HPS
@contextmanager
def timer(message):
tick = time()
yield
tock = time()
logger.info(f"{message}: {(tock - tick):.3f} seconds")
'''
params:
@ train_step: total number of mini-batch updates
@ usage: learning rate annealling
'''
def schedule_lrn_rate(train_step):
"""train_step equals total number of min_batch updates"""
f = 1 # rl schedule factor
lr = 1e-3
if train_step < 1 * f:
lr = 1e-3 # 1e-1 blows up, sometimes 1e-2 blows up too.
elif train_step < 2 * f:
lr = 1e-4
elif train_step < 3 * f:
lr = 1e-4
elif train_step < 4 * f:
lr = 1e-4
elif train_step < 5 * f:
lr = 1e-5
else:
lr = 1e-5
return lr
'''
params:
@ usage: Go text protocol to play in Sabaki
'''
# Credit: Brain Lee
def gtp(flags=FLAGS, hps=HPS):
from utils.gtp_wrapper import make_gtp_instance
engine = make_gtp_instance(flags=flags, hps=hps)
if engine is None:
sys.stderr.write("Unknown strategy")
sys.exit()
sys.stderr.write("GTP engine ready\n")
sys.stderr.flush()
while not engine.disconnect:
inpt = input()
# handle either single lines at a time
# or multiple commands separated by '\n'
try:
cmd_list = inpt.split("\n")
except:
cmd_list = [inpt]
for cmd in cmd_list:
engine_reply = engine.send(cmd)
sys.stdout.write(engine_reply)
sys.stdout.flush()
'''
params:
@ usage: self play with search pipeline
'''
def selfplay(flags=FLAGS, hps=HPS):
from utils.load_data_sets import DataSet
from model.SelfPlayWorker import SelfPlayWorker
from Network import Network
test_dataset = DataSet.read(os.path.join(flags.processed_dir, "test.chunk.gz"))
#test_dataset = None
"""set the batch size to -1==None"""
flags.n_batch = -1
net = Network(flags, hps)
Worker = SelfPlayWorker(net, flags)
def train(epoch: int):
lr = schedule_lrn_rate(epoch)
Worker.run(lr=lr)
# TODO: consider tensorflow copy_to_graph
def get_best_model():
return Network(flags, hps)
def evaluate_generations():
best_model = get_best_model()
Worker.evaluate_model(best_model)
def evaluate_testset():
Worker.evaluate_testset(test_dataset)
"""Self Play Pipeline starts here"""
for g_epoch in range(flags.global_epoch):
logger.info(f'Global epoch {g_epoch} start.')
"""Train"""
train(g_epoch)
"""Evaluate on test dataset"""
evaluate_testset()
"""Evaluate against best model"""
evaluate_generations()
logger.info(f'Global epoch {g_epoch} finish.')
'''
params:
@ usage: train a supervised learning network
'''
def train(flags=FLAGS, hps=HPS):
from utils.load_data_sets import DataSet
from Network import Network
TRAINING_CHUNK_RE = re.compile(r"train\d+\.chunk.gz")
net = Network(flags, hps)
test_dataset = DataSet.read(os.path.join(flags.processed_dir, "test.chunk.gz"))
train_chunk_files = [os.path.join(flags.processed_dir, fname)
for fname in os.listdir(flags.processed_dir)
if TRAINING_CHUNK_RE.match(fname)]
def training_datasets():
random.shuffle(train_chunk_files)
return (DataSet.read(file) for file in train_chunk_files)
global_step = 0
lr = flags.lr
with open("result.txt", "a") as f:
for g_epoch in range(flags.global_epoch):
"""Train"""
lr = schedule_lrn_rate(g_epoch)
for train_dataset in training_datasets():
global_step += 1
# prepare training set
logger.info(f"Global step {global_step} start")
train_dataset.shuffle()
with timer("training"):
net.train(train_dataset, lrn_rate=lr)
"""Evaluate"""
if global_step % 1 == 0:
with timer("test set evaluation"):
net.test(test_dataset, proportion=0.25,
force_save_model=global_step % 10 == 0)
logger.info(f'Global step {global_step} finshed.')
logger.info(f'Global epoch {g_epoch} finshed.')
'''
params:
@ usage: test a trained network on test dataset
'''
def test(flags=FLAGS, hps=HPS):
from utils.load_data_sets import DataSet
from Network import Network
import tensorflow as tf
net = Network(flags, hps)
# print(net.sess.run({var.name:var for var in tf.global_variables() if 'bn' in var.name}))
test_dataset = DataSet.read(os.path.join(flags.processed_dir, "test.chunk.gz"))
with timer("test set evaluation"):
net.test(test_dataset, proportion=0.25, force_save_model=False)
if __name__ == '__main__':
if not os.path.exists('./train_log'):
os.makedirs('./train_log')
if not os.path.exists('./test_log'):
os.makedirs('./test_log')
if not os.path.exists('./savedmodels'):
os.makedirs('./savedmodels')
if not os.path.exists('./result.txt'):
# hacky way to creat a file
open("result.txt", "a").close()
fn = {'train': lambda: train(),
'gtp': lambda: gtp(),
'selfplay': lambda: selfplay(),
'test': lambda: test()}
if fn.get(FLAGS.MODE, 0) != 0:
fn[FLAGS.MODE]()
else:
logger.info('Please choose a mode among "train", "selfplay", "gtp", and "test".')