-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathNetwork.py
261 lines (223 loc) · 10.7 KB
/
Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import tensorflow as tf
import numpy as np
import os
import sys
import logging
import daiquiri
daiquiri.setup(level=logging.DEBUG)
logger = daiquiri.getLogger(__name__)
from model.alphagozero_resnet_model import AlphaGoZeroResNet
from model.alphagozero_resnet_elu_model import AlphaGoZeroResNetELU
from model.alphagozero_resnet_full_model import AlphaGoZeroResNetFULL
class Network:
"""
funcs:
@ Build graph.
@ Training
@ Testing
@ Evaluating
usage: Working with multiple Graphs
"""
def __init__(self, flags, hps):
"""reset TF Graph"""
tf.reset_default_graph()
"""Creat a new graph for the network"""
g = tf.Graph()
config = tf.ConfigProto(
inter_op_parallelism_threads=4,
intra_op_parallelism_threads=4)
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
"""Assign a Session that excute the network"""
config.gpu_options.per_process_gpu_memory_fraction = 0.4
self.sess = tf.Session(config=config, graph=g)
# Basic info
self.batch_num = flags.n_batch
self.num_epoch = flags.n_epoch
self.img_row = flags.n_img_row
self.img_col = flags.n_img_col
self.img_channels = flags.n_img_channels
self.nb_classes = flags.n_classes
self.optimizer_name = hps.optimizer
self.load_model_path = flags.load_model_path
'''
img: ?x19x19x17
labels: ?x362
results: ?x1
'''
"""Initialize/load Variables within TF Graph"""
with g.as_default():
self.imgs = tf.placeholder(tf.float32, shape=[
flags.n_batch if flags.MODE == 'train' else None, self.img_row, self.img_col, self.img_channels])
self.labels = tf.placeholder(
tf.float32, shape=[flags.n_batch if flags.MODE == 'train' else None, self.nb_classes])
self.results = tf.placeholder(
tf.float32, shape=[flags.n_batch if flags.MODE == 'train' else None, 1])
# One bing the original AlphaGo Zero relu
# Two being the elu deep residul net with AlphaGo Zero architecture
# Three being the full identity residual net with gloabl average pooling
models = {'elu': lambda: AlphaGoZeroResNetELU(hps, self.imgs, self.labels, self.results, 'train'),
'full': lambda: AlphaGoZeroResNetFULL(hps, self.imgs, self.labels, self.results, 'train'),
'original': lambda: AlphaGoZeroResNet(hps, self.imgs, self.labels, self.results, 'train')}
logger.debug('Building Model...')
self.model = models[flags.model]()
self.model.build_graph()
var_to_save = tf.trainable_variables() + [var for var in tf.global_variables() if ('bn' in var.name) and ('Adam' not in var.name) and ('Momentum' not in var.name) or ('global_step' in var.name)] # tf 1.7.0 would complain duplicate batch norm variables, so if you are using tf 1.7.0, pls comment out the second part of var_to_save
logger.debug(
f'Building Model Complete...Total parameters: {self.model.total_parameters(var_list=var_to_save)}')
self.summary = self.model.summaries
self.train_writer = tf.summary.FileWriter("./train_log")
self.test_writer = tf.summary.FileWriter("./test_log")
self.saver = tf.train.Saver(var_list=var_to_save, max_to_keep=10)
logger.debug(f'Build Summary & Saver complete')
self.initialize()
self.restore_model(flags.load_model_path)
'''
params:
usage: destructor
'''
def close(self):
self.sess.close()
logger.info(f'NETWORK SHUTDOWN!!!')
'''
params:
@ sess: the session to use
usage: load model
'''
def initialize(self):
#init = (var.initializer for var in tf.global_variables())
# self.sess.run(list(init))
self.sess.run(tf.global_variables_initializer())
logger.debug('Done initializing variables')
'''
params:
@ sess: the session to use
usage: load model
'''
def restore_model(self, check_point_path):
if self.load_model_path is not None:
logger.debug('Loading Model...')
try:
ckpt = tf.train.get_checkpoint_state(check_point_path)
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
logger.debug('Loading Model Succeeded...')
except:
logger.debug('Loading Model Failed')
pass
'''
params:
@ sess: the session to use
usage: save model
'''
def save_model(self, name: float):
self.saver.save(self.sess, f'./savedmodels/large20/model-{name}.ckpt',
global_step=self.sess.run(self.model.global_step))
'''
params:
@ imgs: bulk_extracted_feature(positions)
usage: queue prediction, self-play
'''
def run_many(self, imgs):
imgs = np.asarray(imgs).astype(np.float32)
imgs[:][..., 16] = (imgs[:][..., 16] - 0.5) * 2
# set high temperature to counter strong move bias?
# set model batch_norm
feed_dict = {self.imgs: imgs, self.model.training: False, self.model.temp: 1.}
move_probabilities, value = self.sess.run(
[self.model.prediction, self.model.value], feed_dict=feed_dict)
# with multi-gpu, porbs and values are separated in each outputs
# so vstack will merge them together.
return np.vstack(move_probabilities), np.vstack(value)
'''
params:
@ training_data: training dataset
@ direction: reinforcement direction
@ use_sparse: use sparse softmax to compute cross entropy
'''
def train(self, training_data, direction=1.0, use_sparse=True, lrn_rate=1e-3):
logger.debug('Training model...')
self.num_iter = training_data.data_size // self.batch_num
# Set default learning rate for scheduling
for j in range(self.num_epoch):
logger.debug(f'Local Epoch {j+1}')
for i in range(self.num_iter):
batch = training_data.get_batch(self.batch_num)
batch = [np.asarray(item).astype(np.float32) for item in batch]
# convert the last feature: player colour to -1 & 1 rather than 0 & 1
batch[0][..., 16] = (batch[0][..., 16] - 0.5) * 2
# convert the game result: -1 & 1 rather than 0 & 1
batch[2] = (batch[2] - 0.5) * 2
feed_dict = {self.imgs: batch[0],
self.labels: batch[1],
self.results: batch[2],
self.model.reinforce_dir: direction, # +1 or -1 only used for self-play data, trivial in SL
self.model.use_sparse_sotfmax: 1 if use_sparse else -1, # +1 in SL, -1 in RL
self.model.training: True}
# self.model.lrn_rate: lrn_rate} # scheduled learning rate
try:
_, l, ac, result_ac, summary, lr, temp, global_norm = \
self.sess.run([self.model.train_op, self.model.cost, self.model.acc,
self.model.result_acc, self.summary, self.model.lrn_rate,
self.model.temp, self.model.norm], feed_dict=feed_dict)
except KeyboardInterrupt:
self.close()
sys.exit()
except tf.errors.InvalidArgumentError:
logger.debug(f'Step {i+1} contains NaN gradients. Discard.')
continue
else:
global_step = self.sess.run(self.model.global_step)
self.train_writer.add_summary(summary, global_step)
self.sess.run(self.model.increase_global_step)
'''
if i % 1 == 0:
with open("result.txt","a") as f:
f.write('Training...\n')
logger.debug(f'Step {i} | Training loss {l:.2f} | Temperature {temp:.2f} | Magnitude of global norm {global_norm:.2f} | Total step {global_step} | Play move accuracy {ac:.4f} | Game outcome accuracy {result_ac:.2f}',file=f)
logger.debug(f'Learning rate {"Adam" if self.optimizer_name=="adam" else lr}',file=f)
'''
'''
params:
@ test_data: test.chunk.gz 10**5 positions
@ proportion: how much proportion to evaluate
usage: evaluate
'''
def test(self, test_data, proportion=0.1, force_save_model=False, no_save=False):
logger.debug('Running evaluation...')
num_minibatches = test_data.data_size // self.batch_num
test_data.shuffle()
test_loss, test_acc, test_result_acc, n_batch = 0, 0, 0, 0
test_data.shuffle()
for i in range(int(num_minibatches * proportion)):
batch = test_data.get_batch(self.batch_num)
batch = [np.asarray(item).astype(np.float32) for item in batch]
# convert the last feature: player colour to -1 & 1 from 0 & 1
batch[0][..., 16] = (batch[0][..., 16] - 0.5) * 2
batch[2] = (batch[2] - 0.5) * 2
feed_dict_eval = {self.imgs: batch[0],
self.labels: batch[1],
self.results: batch[2],
self.model.training: False}
summary, loss, ac, result_acc = self.sess.run(
[self.summary, self.model.cost, self.model.acc, self.model.result_acc], feed_dict=feed_dict_eval)
test_loss += loss
test_acc += ac
test_result_acc += result_acc
n_batch += 1
self.test_writer.add_summary(summary)
#logger.debug(f'Test accuaracy: {test_acc/n_batch:.4f}')
tot_test_loss = test_loss / (n_batch - 1e-2)
tot_test_acc = test_acc / (n_batch - 1e-2)
test_result_acc = test_result_acc / (n_batch - 1e-2)
'''
with open("result.txt","a") as f:
f.write('Running evaluation...\n')
logger.debug(f'Test loss: {tot_test_loss:.2f}',file=f)
logger.debug(f'Play move test accuracy: {tot_test_acc:.4f}',file=f)
logger.debug(f'Win ratio test accuracy: {test_result_acc:.2f}',file=f)
'''
"""no_save should only be activated during self play evaluation"""
if not no_save:
if (tot_test_acc > 0.4 or force_save_model):
# save when test acc is bigger than 20% or force save model
self.save_model(name=round(tot_test_acc, 4))