-
Notifications
You must be signed in to change notification settings - Fork 941
/
Copy pathapi.py
190 lines (153 loc) · 7.1 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import os
from skimage.io import imread, imsave
from skimage.transform import estimate_transform, warp
from time import time
from predictor import PosPrediction
class PRN:
''' Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network
Args:
is_dlib(bool, optional): If true, dlib is used for detecting faces.
prefix(str, optional): If run at another folder, the absolute path is needed to load the data.
'''
def __init__(self, is_dlib = False, prefix = '.'):
# resolution of input and output image size.
self.resolution_inp = 256
self.resolution_op = 256
#---- load detectors
if is_dlib:
import dlib
detector_path = os.path.join(prefix, 'Data/net-data/mmod_human_face_detector.dat')
self.face_detector = dlib.cnn_face_detection_model_v1(
detector_path)
#---- load PRN
self.pos_predictor = PosPrediction(self.resolution_inp, self.resolution_op)
prn_path = os.path.join(prefix, 'Data/net-data/256_256_resfcn256_weight')
if not os.path.isfile(prn_path + '.data-00000-of-00001'):
print("please download PRN trained model first.")
exit()
self.pos_predictor.restore(prn_path)
# uv file
self.uv_kpt_ind = np.loadtxt(prefix + '/Data/uv-data/uv_kpt_ind.txt').astype(np.int32) # 2 x 68 get kpt
self.face_ind = np.loadtxt(prefix + '/Data/uv-data/face_ind.txt').astype(np.int32) # get valid vertices in the pos map
self.triangles = np.loadtxt(prefix + '/Data/uv-data/triangles.txt').astype(np.int32) # ntri x 3
self.uv_coords = self.generate_uv_coords()
def generate_uv_coords(self):
resolution = self.resolution_op
uv_coords = np.meshgrid(range(resolution),range(resolution))
uv_coords = np.transpose(np.array(uv_coords), [1,2,0])
uv_coords = np.reshape(uv_coords, [resolution**2, -1]);
uv_coords = uv_coords[self.face_ind, :]
uv_coords = np.hstack((uv_coords[:,:2], np.zeros([uv_coords.shape[0], 1])))
return uv_coords
def dlib_detect(self, image):
return self.face_detector(image, 1)
def net_forward(self, image):
''' The core of out method: regress the position map of a given image.
Args:
image: (256,256,3) array. value range: 0~1
Returns:
pos: the 3D position map. (256, 256, 3) array.
'''
return self.pos_predictor.predict(image)
def process(self, input, image_info = None):
''' process image with crop operation.
Args:
input: (h,w,3) array or str(image path). image value range:1~255.
image_info(optional): the bounding box information of faces. if None, will use dlib to detect face.
Returns:
pos: the 3D position map. (256, 256, 3).
'''
if isinstance(input, str):
try:
image = imread(input)
except IOError:
print("error opening file: ", input)
return None
else:
image = input
if image.ndim < 3:
image = np.tile(image[:,:,np.newaxis], [1,1,3])
if image_info is not None:
if np.max(image_info.shape) > 4: # key points to get bounding box
kpt = image_info
if kpt.shape[0] > 3:
kpt = kpt.T
left = np.min(kpt[0, :]); right = np.max(kpt[0, :]);
top = np.min(kpt[1,:]); bottom = np.max(kpt[1,:])
else: # bounding box
bbox = image_info
left = bbox[0]; right = bbox[1]; top = bbox[2]; bottom = bbox[3]
old_size = (right - left + bottom - top)/2
center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0])
size = int(old_size*1.6)
else:
detected_faces = self.dlib_detect(image)
if len(detected_faces) == 0:
print('warning: no detected face')
return None
d = detected_faces[0].rect ## only use the first detected face (assume that each input image only contains one face)
left = d.left(); right = d.right(); top = d.top(); bottom = d.bottom()
old_size = (right - left + bottom - top)/2
center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0 + old_size*0.14])
size = int(old_size*1.58)
# crop image
src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]])
DST_PTS = np.array([[0,0], [0,self.resolution_inp - 1], [self.resolution_inp - 1, 0]])
tform = estimate_transform('similarity', src_pts, DST_PTS)
image = image/255.
cropped_image = warp(image, tform.inverse, output_shape=(self.resolution_inp, self.resolution_inp))
# run our net
#st = time()
cropped_pos = self.net_forward(cropped_image)
#print 'net time:', time() - st
# restore
cropped_vertices = np.reshape(cropped_pos, [-1, 3]).T
z = cropped_vertices[2,:].copy()/tform.params[0,0]
cropped_vertices[2,:] = 1
vertices = np.dot(np.linalg.inv(tform.params), cropped_vertices)
vertices = np.vstack((vertices[:2,:], z))
pos = np.reshape(vertices.T, [self.resolution_op, self.resolution_op, 3])
return pos
def get_landmarks(self, pos):
'''
Args:
pos: the 3D position map. shape = (256, 256, 3).
Returns:
kpt: 68 3D landmarks. shape = (68, 3).
'''
kpt = pos[self.uv_kpt_ind[1,:], self.uv_kpt_ind[0,:], :]
return kpt
def get_vertices(self, pos):
'''
Args:
pos: the 3D position map. shape = (256, 256, 3).
Returns:
vertices: the vertices(point cloud). shape = (num of points, 3). n is about 40K here.
'''
all_vertices = np.reshape(pos, [self.resolution_op**2, -1])
vertices = all_vertices[self.face_ind, :]
return vertices
def get_colors_from_texture(self, texture):
'''
Args:
texture: the texture map. shape = (256, 256, 3).
Returns:
colors: the corresponding colors of vertices. shape = (num of points, 3). n is 45128 here.
'''
all_colors = np.reshape(texture, [self.resolution_op**2, -1])
colors = all_colors[self.face_ind, :]
return colors
def get_colors(self, image, vertices):
'''
Args:
pos: the 3D position map. shape = (256, 256, 3).
Returns:
colors: the corresponding colors of vertices. shape = (num of points, 3). n is 45128 here.
'''
[h, w, _] = image.shape
vertices[:,0] = np.minimum(np.maximum(vertices[:,0], 0), w - 1) # x
vertices[:,1] = np.minimum(np.maximum(vertices[:,1], 0), h - 1) # y
ind = np.round(vertices).astype(np.int32)
colors = image[ind[:,1], ind[:,0], :] # n x 3
return colors