-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolour-noise_Jupyternotebook_ys.py
151 lines (117 loc) · 4.15 KB
/
colour-noise_Jupyternotebook_ys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#%%
# try to simulate discrete absorption from photoreceptors
import numpy as n
import matplotlib.pyplot as p
import scipy.interpolate as i
#%%
xsurfres, ysurfres = 100,100
triangle_xsml = [0., -1./n.sqrt(2.), 1./n.sqrt(2.)]
triangle_ysml = [n.sqrt(2./3.), -n.sqrt(1./6.), -n.sqrt(1./6.)]
greenscale = 1
bluescale = 1
uvscale = 1
smooth = 3
fn = 'bombus_tuning.csv'
def triloc(gphot, bphot, uphot):
'''Give the x, y location in the color triangle based on the receptor
stimulation values'''
sumstim = gphot + bphot + uphot
if sumstim == 0: sumstim = .0001
gphot = float(gphot) / float(sumstim)
bphot = float(bphot) / float(sumstim)
uphot = float(uphot) / float(sumstim)
x1 = float(gphot - bphot)/n.sqrt(2.)
x2 = n.sqrt(2./3.)*(uphot - (gphot + bphot)/2.)
return (x1, x2)
def receptor_stim(spectrum, absorption, quantum=False):
gamma = spectrum * absorption
if quantum: gamma = n.random.poisson(gamma)
return(sum(gamma))
def make_surf(spectrum, gr_abs, bl_abs, uv_abs, reps=10000, surfres=100):
'''Get the whole absorption surface'''
surf = n.zeros([surfres, surfres])
xbounds = n.linspace(-1./n.sqrt(2.), 1./n.sqrt(2.), surfres)
ybounds = n.linspace(-n.sqrt(1./6.), n.sqrt(2./3.), surfres)
for i in n.arange(reps):
gphot = receptor_stim(spectrum, gr_abs, quantum=True)
bphot = receptor_stim(spectrum, bl_abs, quantum=True)
uphot = receptor_stim(spectrum, uv_abs, quantum=True)
x, y = triloc(gphot, bphot, uphot)
surf[n.searchsorted(xbounds, x), n.searchsorted(ybounds, y)] += 1
return xbounds, ybounds, surf
def percentile_val(surf, p):
total = sum(surf)
target = total - p*total
estimate = 0
while sum(surf[surf<estimate]) < target:
estimate += 1
return estimate
#%%
# wls to sample at
smooth_wls = n.arange(300., 650., 1.)
num_wls = len(smooth_wls)
# read the file with color tuning curves for each receptor
receptors = n.loadtxt(fn, skiprows=1, delimiter=',')
wl = receptors[:,0]
uv = receptors[:,1]*uvscale
bl = receptors[:,2]*bluescale
gr = receptors[:,3]*greenscale
# make smooth splines for each receptor
gr_spl = i.InterpolatedUnivariateSpline(wl, gr, k=smooth)
bl_spl = i.InterpolatedUnivariateSpline(wl, bl, k=smooth)
uv_spl = i.InterpolatedUnivariateSpline(wl, uv, k=smooth)
# and calculate the responses at our sampled wls
gr_rsp = gr_spl(smooth_wls)
bl_rsp = bl_spl(smooth_wls)
uv_rsp = uv_spl(smooth_wls)
p.figure(1, [12,6])
p.clf()
# first plot the absorption spectra
p.subplot(221)
p.plot(smooth_wls, gr_rsp, '-', color='green', lw=2)
p.plot(smooth_wls, bl_rsp, '-', color='blue', lw=2)
p.plot(smooth_wls, uv_rsp, '-', color='purple', lw=2)
p.title('Receptors')
p.xlabel(r'$\lambda$ (nm)')
# now a color
### spectral color
# spectrum = n.zeros(num_wls)
# spectrum[100] = 10
### uniform white
spectrum = n.zeros(num_wls)
spectrum[:] = .049
### white noise white
spectrum = abs(n.random.randn(num_wls))*.05
# plot it
p.subplot(223)
p.plot(smooth_wls, spectrum, '-', color='0.5', lw=2)
p.title('Light', y=.85)
p.xlabel(r'$\lambda$ (nm)')
# plot the triangle
tri = p.subplot(122, aspect='equal')
offset = .01
p.fill(triangle_xsml, triangle_ysml, 'w', lw=2, ec='k')
p.text(triangle_xsml[0], triangle_ysml[0] + offset, 'UV', horizontalalignment='center')
p.text(triangle_xsml[1], triangle_ysml[1] - offset, 'Blue', verticalalignment='top', horizontalalignment='center')
p.text(triangle_xsml[2], triangle_ysml[2] - offset, 'Green', verticalalignment='top', horizontalalignment='center')
p.xticks([])
p.yticks([])
tri.spines['left'].set_visible(False)
tri.spines['bottom'].set_visible(False)
# now get the actual color plotted on the triangle
gr_abs = receptor_stim(spectrum, gr_rsp)
bl_abs = receptor_stim(spectrum, bl_rsp)
uv_abs = receptor_stim(spectrum, uv_rsp)
x, y = triloc(gr_abs, bl_abs, uv_abs)
# and plot it
p.plot(x, y, 'ko')
# and simulate the color absorption with quantum noise to get confidence bounds
xbounds, ybounds, surf = make_surf(spectrum, gr_abs, bl_abs, uv_abs, reps=1000)
# and plot it
p.contour(xbounds, ybounds, surf.T, [percentile_val(surf, .9), percentile_val(surf, .5), percentile_val(surf, .1)])
#%%
triloc(1,2,3)
#%%
spectrum
#%%
clf()