-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathch18.Rmd
147 lines (111 loc) · 3.84 KB
/
ch18.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
title: "資料分析實戰"
author: "郭耀仁"
date: "`r Sys.Date()`"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, message = FALSE)
```
## 簡介
在這份報告裡面我下載 [Kaggle](https://www.kaggle.com/) 的 Titanic 訓練與測試進行資料整理,探索性分析與機器學習的分類模型。
## 資料讀取
我使用 `read.csv()` 函數讀入資料集。
```{r}
titanic <- read.csv("https://storage.googleapis.com/r_rookies/kaggle_titanic_train.csv")
```
## 資料框外觀
我使用 `str()` 函數得知這個資料有 891 個觀測值與 12 個變數。
```{r}
str(titanic)
```
## 描述性統計與資料清理
我使用 `summary()` 函數進行描述性統計。
```{r}
summary(titanic)
```
我發現這個資料的 `Age` 變數有 177 個遺漏值,我決定只留下完整的觀測值訓練。而 `Embarked` 有兩個空值,我決定以 S 填補。
```{r}
titanic <- titanic[complete.cases(titanic), ]
titanic$Survived <- factor(titanic$Survived)
titanic$Embarked <- as.character(titanic$Embarked)
titanic$Embarked[titanic$Embarked == ""] <- "S"
titanic$Embarked <- factor(titanic$Embarked)
```
## 探索性分析
我利用 `ggplot2` 與 `plotly` 套件來作圖。
```{r message = FALSE}
library(ggplot2)
library(plotly)
```
```{r}
# 性別
ggplot_bar_sex <- ggplot(titanic, aes(x = Sex, y = Survived, fill = Sex)) + geom_bar(stat = "identity")
ggplot_bar_sex_plotly <- ggplotly(ggplot_bar_sex)
ggplot_bar_sex_plotly
# Pclass
ggplot_bar_pclass <- ggplot(titanic, aes(x = factor(Pclass), y = Survived, fill = factor(Pclass))) + geom_bar(stat = "identity", width = .7)
ggplot_bar_pclass_plotly <- ggplotly(ggplot_bar_pclass)
ggplot_bar_pclass_plotly
```
## 建立一個分類模型
我利用 `randomForest()` 函數建立一個隨機森林分類模型來預測 `Survived` 變數。
```{r}
# 切分訓練與測試資料
set.seed(87)
n <- nrow(titanic)
shuffled_titanic <- titanic[sample(n), ]
train_indices <- 1:round(0.7 * n)
train <- shuffled_titanic[train_indices, ]
test_indices <- (round(0.7 * n) + 1):n
test <- shuffled_titanic[test_indices, ]
# 建立分類器
library(randomForest)
rf_clf <- randomForest(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked, data = train, ntree = 100)
# 計算 accuracy
prediction <- predict(rf_clf, test[, c("Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked")])
confusion_matrix <- table(test$Survived, prediction)
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
accuracy
```
## 探索沒有答案的上傳資料
- `Age` 有 86 個遺漏值
- `Fare` 有 1 個遺漏值
- 上傳資料不能刪除觀測值
```{r}
url <- "https://storage.googleapis.com/py_ds_basic/kaggle_titanic_test.csv"
to_predict <- read.csv(url)
summary(to_predict)
```
## 填補遺漏值
- `Fare` 用平均值填滿。
- `Age` 依照 `Pclass` 的平均年齡填滿
```{r}
library(dplyr)
library(magrittr)
# Fare
fare_mean <- mean(to_predict$Fare, na.rm = TRUE)
to_predict$Fare[is.na(to_predict$Fare)] <- fare_mean
# Age
mean_age_by_Pclass <- to_predict %>%
group_by(Pclass) %>%
summarise(mean_age = round(mean(Age, na.rm = TRUE)))
filter_1 <- is.na(to_predict$Age) & to_predict$Pclass == 1
filter_2 <- is.na(to_predict$Age) & to_predict$Pclass == 2
filter_3 <- is.na(to_predict$Age) & to_predict$Pclass == 3
mean_age_by_Pclass
to_predict[filter_1, ]$Age <- 41
to_predict[filter_2, ]$Age <- 29
to_predict[filter_3, ]$Age <- 24
# Summary after imputation
summary(to_predict)
```
## 準備上傳
```{r}
predicted <- predict(rf_clf, newdata = to_predict[, c("Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked")])
to_submit <- data.frame(to_predict[, "PassengerId"], predicted)
names(to_submit) <- c("PassengerId", "Survived")
head(to_submit, n = 10)
write.csv(to_submit, file = "to_submit.csv", row.names = FALSE)
```
![Kaggle Submission](kaggle_submission.png)