除了 Python 基本的資料結構(list,tuple 與 dictionary)以及昨天學習筆記提到的 ndarray,還記得我們在 [第 06 天] 資料結構(3)Data Frame 提到,為了讓 Python 也能夠使用類似 R 語言的 data frame 資料結構而使用了 pandas
套件的 data frame 嗎?我們勢必也要瞭解她常見的屬性或方法。
使用 pandas
套件的 DataFrame()
方法將一個 dictionary 的資料結構轉換成 data frame。
import pandas as pd
# 截至 2016-12-14 上午 11 時第 8 屆 iT 邦幫忙各組的鐵人分別是 59、9、19、14、6 與 77 人
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
ironmen_df = pd.DataFrame(ironmen_dict)
ironmen_df
眼尖的你發現到我們在建立 data frame 的時候並沒有去指定索引值(index),然而生成的 data frame 卻自動產生了類似 R 語言的 row.names
,多麽貼心的設計!
ndim
屬性shape
屬性dtypes
屬性
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
# 使用屬性
print(ironmen_df.ndim)
print("---") # 分隔線
print(ironmen_df.shape)
print("---") # 分隔線
print(ironmen_df.dtypes)
data frame 可以透過 drop()
方法來刪除觀測值或欄位,指定參數 axis = 0
表示要刪除觀測值(row),指定參數 axis = 1
表示要刪除欄位(column)。
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
# 刪除觀測值
ironmen_df_no_mw = ironmen_df.drop(0, axis = 0)
print(ironmen_df_no_mw)
print("---") # 分隔線
# 刪除欄位
ironmen_df_no_groups = ironmen_df.drop("groups", axis = 1)
print(ironmen_df_no_groups)
我們可以透過 ix
屬性(利用索引值)篩選 data frame。
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
# 選擇欄位
print(ironmen_df.ix[:, "groups"])
print("---") # 分隔線
# 選擇觀測值
print(ironmen_df.ix[0])
print("---") # 分隔線
# 同時選擇欄位與觀測值
print(ironmen_df.ix[0, "groups"])
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
filter = ironmen_df["ironmen"] > 10 # 參賽人數大於 10
ironmen_df[filter] # 篩選 data frame
sort_index()
方法sort_values()
方法
使用 data frame 的 sort_index()
方法可以用索引值排序。
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen, columns = ["ironmen"], index = groups)
# 用索引值排序
ironmen_df.sort_index()
使用 data frame 的 sort_values()
方法可以用指定欄位的數值排序。
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen, columns = ["ironmen"], index = groups)
# 用數值排序
ironmen_df.sort_values(by = "ironmen")
data frame 有 sum()
、mean()
、median()
與 describe()
等統計方法可以使用。
import pandas as pd
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
print(ironmen_df.sum()) # 計算總鐵人數
print("---") # 分隔線
print(ironmen_df.mean()) # 計算平均鐵人數
print("---") # 分隔線
print(ironmen_df.median()) # 計算中位數
print("---") # 分隔線
print(ironmen_df.describe()) # 描述統計
透過 pandas
的 value_counts()
方法可以統計相異值的個數。
import pandas as pd
gender = ["Male", "Male", "Female", "Male", "Male", "Male", "Female", "Male", "Male"]
name = ["蒙其·D·魯夫", "羅羅亞·索隆", "娜美", "騙人布", "文斯莫克·香吉士", "多尼多尼·喬巴", "妮可·羅賓", "佛朗基", "布魯克"]
# 建立 data frame
ironmen_df = pd.DataFrame(gender, columns = ["gender"], index = name)
# 計算男女各有幾個觀測值
pd.value_counts(ironmen_df.gender)
isnull()
方法notnull()
方法
import numpy as np
import pandas as pd
groups = ["Modern Web", "DevOps", np.nan, "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, np.nan]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
print(ironmen_df.ix[:, "groups"].isnull()) # 判斷哪些組的組名是遺失值
print("---") # 分隔線
print(ironmen_df.ix[:, "ironmen"].notnull()) # 判斷哪些組的鐵人數不是遺失值
dropna()
方法fillna()
方法
import numpy as np
import pandas as pd
groups = ["Modern Web", "DevOps", np.nan, "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, np.nan]
ironmen_dict = {
"groups": groups,
"ironmen": ironmen
}
# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)
ironmen_df_na_dropped = ironmen_df.dropna() # 有遺失值的觀測值都刪除
print(ironmen_df_na_dropped)
print("---") # 分隔線
ironmen_df_na_filled = ironmen_df.fillna(0) # 有遺失值的觀測值填補 0
print(ironmen_df_na_filled)
print("---") # 分隔線
ironmen_df_na_filled = ironmen_df.fillna({"groups": "Cloud", "ironmen": 71}) # 依欄位填補遺失值
print(ironmen_df_na_filled)
第十四天我們討論了 pandas
套件與 data frame 的屬性或方法,包含建立,篩選與排序等,這些屬性與方法有的隸屬於 pandas
套件,有的隸屬於 data frame 這個資料結構所建立的物件,對於熟悉物件導向的概念是很好的練習機會。