Skip to content

Latest commit

 

History

History
302 lines (207 loc) · 8.24 KB

day14.md

File metadata and controls

302 lines (207 loc) · 8.24 KB

[第 14 天] 常用屬性或方法(3)Data Frame


除了 Python 基本的資料結構(list,tuple 與 dictionary)以及昨天學習筆記提到的 ndarray,還記得我們在 [第 06 天] 資料結構(3)Data Frame 提到,為了讓 Python 也能夠使用類似 R 語言的 data frame 資料結構而使用了 pandas 套件的 data frame 嗎?我們勢必也要瞭解她常見的屬性或方法。

Pandas 與 data frame 的常用屬性或方法

建立 data frame

使用 pandas 套件的 DataFrame() 方法將一個 dictionary 的資料結構轉換成 data frame。

import pandas as pd

# 截至 2016-12-14 上午 11 時第 8 屆 iT 邦幫忙各組的鐵人分別是 59、9、19、14、6 與 77 人
groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

ironmen_df = pd.DataFrame(ironmen_dict)
ironmen_df

day1401

眼尖的你發現到我們在建立 data frame 的時候並沒有去指定索引值(index),然而生成的 data frame 卻自動產生了類似 R 語言的 row.names,多麽貼心的設計!

瞭解 data frame 的概觀

  • ndim 屬性
  • shape 屬性
  • dtypes 屬性
import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

# 使用屬性
print(ironmen_df.ndim)
print("---") # 分隔線
print(ironmen_df.shape)
print("---") # 分隔線
print(ironmen_df.dtypes)

day1402

刪除觀測值或欄位

data frame 可以透過 drop() 方法來刪除觀測值或欄位,指定參數 axis = 0 表示要刪除觀測值(row),指定參數 axis = 1 表示要刪除欄位(column)。

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

# 刪除觀測值
ironmen_df_no_mw = ironmen_df.drop(0, axis = 0)
print(ironmen_df_no_mw)
print("---") # 分隔線

# 刪除欄位
ironmen_df_no_groups = ironmen_df.drop("groups", axis = 1)
print(ironmen_df_no_groups)

day1403

透過 ix 屬性篩選 data frame

我們可以透過 ix 屬性(利用索引值)篩選 data frame。

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

# 選擇欄位
print(ironmen_df.ix[:, "groups"])
print("---") # 分隔線

# 選擇觀測值
print(ironmen_df.ix[0])
print("---") # 分隔線

# 同時選擇欄位與觀測值
print(ironmen_df.ix[0, "groups"])

day1404

透過布林值篩選 data frame

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

filter = ironmen_df["ironmen"] > 10 # 參賽人數大於 10
ironmen_df[filter] # 篩選 data frame

day1405

排序

  • sort_index() 方法
  • sort_values() 方法

使用 data frame 的 sort_index() 方法可以用索引值排序。

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen, columns = ["ironmen"], index = groups)

# 用索引值排序
ironmen_df.sort_index()

day1406

使用 data frame 的 sort_values() 方法可以用指定欄位的數值排序。

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen, columns = ["ironmen"], index = groups)

# 用數值排序
ironmen_df.sort_values(by = "ironmen")

day1407

描述統計

data frame 有 sum()mean()median()describe() 等統計方法可以使用。

import pandas as pd

groups = ["Modern Web", "DevOps", "Cloud", "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, 77]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

print(ironmen_df.sum()) # 計算總鐵人數
print("---") # 分隔線
print(ironmen_df.mean()) # 計算平均鐵人數
print("---") # 分隔線
print(ironmen_df.median()) # 計算中位數
print("---") # 分隔線
print(ironmen_df.describe()) # 描述統計

day140801

相異值個數

透過 pandasvalue_counts() 方法可以統計相異值的個數。

import pandas as pd

gender = ["Male", "Male", "Female", "Male", "Male", "Male", "Female", "Male", "Male"]
name = ["蒙其·D·魯夫", "羅羅亞·索隆", "娜美", "騙人布", "文斯莫克·香吉士", "多尼多尼·喬巴", "妮可·羅賓", "佛朗基", "布魯克"]

# 建立 data frame
ironmen_df = pd.DataFrame(gender, columns = ["gender"], index = name)

# 計算男女各有幾個觀測值
pd.value_counts(ironmen_df.gender)

day1409

遺失值

判斷遺失值

  • isnull() 方法
  • notnull() 方法
import numpy as np
import pandas as pd

groups = ["Modern Web", "DevOps", np.nan, "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, np.nan]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

print(ironmen_df.ix[:, "groups"].isnull()) # 判斷哪些組的組名是遺失值
print("---") # 分隔線
print(ironmen_df.ix[:, "ironmen"].notnull()) # 判斷哪些組的鐵人數不是遺失值

day1410

處理遺失值

  • dropna() 方法
  • fillna() 方法
import numpy as np
import pandas as pd

groups = ["Modern Web", "DevOps", np.nan, "Big Data", "Security", "自我挑戰組"]
ironmen = [59, 9, 19, 14, 6, np.nan]

ironmen_dict = {
                "groups": groups,
                "ironmen": ironmen
}

# 建立 data frame
ironmen_df = pd.DataFrame(ironmen_dict)

ironmen_df_na_dropped = ironmen_df.dropna() # 有遺失值的觀測值都刪除
print(ironmen_df_na_dropped)
print("---") # 分隔線
ironmen_df_na_filled = ironmen_df.fillna(0) # 有遺失值的觀測值填補 0
print(ironmen_df_na_filled)
print("---") # 分隔線
ironmen_df_na_filled = ironmen_df.fillna({"groups": "Cloud", "ironmen": 71}) # 依欄位填補遺失值
print(ironmen_df_na_filled)

day1411

小結

第十四天我們討論了 pandas 套件與 data frame 的屬性或方法,包含建立,篩選與排序等,這些屬性與方法有的隸屬於 pandas 套件,有的隸屬於 data frame 這個資料結構所建立的物件,對於熟悉物件導向的概念是很好的練習機會。

參考連結