-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain.py
345 lines (281 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# *_*coding:utf-8 *_*
"""
Author: Xu Yan
File: train.py
Date: 2020/4/9 14:40
"""
import torch.optim as optim
from pathlib import Path
from utils import config
import torch.nn as nn
from tqdm import tqdm
import numpy as np
import importlib
import logging
import shutil
import spconv
import json
import yaml
import time
import torch
import os
from utils.evaluate_completion import get_eval_mask
from torch.utils.checkpoint import checkpoint
import models.model_utils as model_utils
from utils.np_ioueval import iouEval
args = config.cfg
def main(args):
'''main'''
LEARNING_RATE_CLIP = 1e-6
MOMENTUM_ORIGINAL = 0.5
MOMENTUM_DECCAY = 0.5
BN_MOMENTUM_MAX = 0.001
NUM_CLASS_SEG = args['DATA']['classes_seg']
NUM_CLASS_COMPLET = args['DATA']['classes_completion']
exp_name = args['log_dir']
if exp_name is not None:
experiment_dir = './log/' + exp_name
experiment_dir = Path(experiment_dir)
experiment_dir.mkdir(exist_ok=True)
experiment_dir = str(experiment_dir)
else:
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('temp')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = str(experiment_dir)
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
with open(os.path.join(experiment_dir, 'args.txt'), 'w') as f:
json.dump(args, f, indent=2)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/train.txt'%(experiment_dir))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
def log_string(str):
logger.info(str)
print(str)
shutil.copy('train.py', str(experiment_dir))
shutil.copy('kitti_dataset.py', str(experiment_dir))
shutil.copy('poss_dataset.py', str(experiment_dir))
shutil.copy('models/model_utils.py', str(experiment_dir))
shutil.copy('models/'+args['Segmentation']['model_name'] + '.py', str(experiment_dir))
shutil.copy('models/'+args['Completion']['model_name'] + '.py', str(experiment_dir))
seg_head = importlib.import_module('models.'+args['Segmentation']['model_name'])
seg_model = seg_head.get_model
complet_head = importlib.import_module('models.'+args['Completion']['model_name'])
complet_model = complet_head.get_model
if args['DATA']['dataset'] == 'SemanticKITTI':
dataset = importlib.import_module('kitti_dataset')
elif args['DATA']['dataset'] == 'SemanticPOSS':
dataset = importlib.import_module('poss_dataset')
else:
raise TypeError
class J3SC_Net(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.seg_head = seg_model(args)
self.complet_head = complet_model(args)
self.voxelpool = model_utils.VoxelPooling(args)
self.seg_sigma = nn.Parameter(torch.Tensor(1).uniform_(0.2, 1), requires_grad=True)
self.complet_sigma = nn.Parameter(torch.Tensor(1).uniform_(0.2, 1), requires_grad=True)
def forward(self, x):
seg_inputs, complet_inputs, _ = x
'''Segmentation Head'''
seg_output, feat = self.seg_head(seg_inputs)
torch.cuda.empty_cache()
'''Completion Head'''
coords = complet_inputs['complet_coords']
coords = coords[:, [0, 3, 2, 1]]
if args['DATA']['dataset'] == 'SemanticKITTI':
coords[:, 3] += 1 # TODO SemanticKITTI will generate [256,256,31]
elif args['DATA']['dataset'] == 'SemanticPOSS':
coords[:, 3][coords[:, 3] > 31] = 31
if args['Completion']['feeding'] == 'both':
feeding = torch.cat([seg_output, feat],1)
elif args['Completion']['feeding'] == 'feat':
feeding = feat
else:
feeding = seg_output
features = self.voxelpool(invoxel_xyz=complet_inputs['complet_invoxel_features'][:, :, :-1],
invoxel_map=complet_inputs['complet_invoxel_features'][:, :, -1].long(),
src_feat=feeding,
voxel_center=complet_inputs['voxel_centers'])
if self.args['Completion']['no_fuse_feat']:
features[...] = 1
features = features.detach()
batch_complet = spconv.SparseConvTensor(features.float(), coords.int(), args['Completion']['full_scale'], args['TRAIN']['batch_size'])
batch_complet = dataset.sparse_tensor_augmentation(batch_complet, complet_inputs['state'])
if args['GENERAL']['debug']:
model_utils.check_occupation(complet_inputs['complet_input'], batch_complet.dense())
complet_output = self.complet_head(batch_complet)
torch.cuda.empty_cache()
return seg_output, complet_output, [self.seg_sigma, self.complet_sigma]
def bn_momentum_adjust(m, momentum):
if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
m.momentum = momentum
classifier = J3SC_Net(args).cuda()
criteria = model_utils.Loss(args).cuda()
training_epochs = args['TRAIN']['epochs']
training_epoch = model_utils.checkpoint_restore(classifier, experiment_dir, True, train_from=args['TRAIN']['train_from'])
optimizer = optim.Adam(classifier.parameters(), lr=args['TRAIN']['learning_rate'], weight_decay=1e-4)
log_string('# Segmentation head parameters %d' % sum([x.nelement() for x in classifier.seg_head.parameters()]))
log_string('# Completion head parameters %d' % sum([x.nelement() for x in classifier.complet_head.parameters()]))
global_epoch = 0
best_iou_sem_complt = 0
best_iou_complt = 0
best_iou_seg = 0
train_data = dataset.get_dataset(args, 'train', False)
val_data = dataset.get_dataset(args, 'valid', False)
train_data_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args['TRAIN']['batch_size'],
collate_fn=seg_head.Merge,
num_workers=args['TRAIN']['train_workers'],
pin_memory=True,
shuffle=True,
drop_last=True,
worker_init_fn=lambda x: np.random.seed(x + int(time.time()))
)
val_data_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args['TRAIN']['batch_size'],
collate_fn=seg_head.Merge,
num_workers=args['TRAIN']['train_workers'],
pin_memory=True,
shuffle=False,
drop_last=True
)
seg_label_to_cat = train_data.label_to_names
seg_labelweights = torch.Tensor(train_data.seg_labelweights).cuda()
compl_labelweights = torch.Tensor(train_data.compl_labelweights).cuda()
kitti_config = yaml.safe_load(open('opt/semantic-kitti.yaml', 'r'))
class_strings = kitti_config["labels"]
class_inv_remap = kitti_config["learning_map_inv"]
for epoch in range(training_epoch, training_epochs+1):
classifier.train()
log_string('\nEpoch %d (%d/%s):' % (global_epoch, epoch + 1, training_epochs))
'''Adjust learning rate and BN momentum'''
lr = max(args['TRAIN']['learning_rate'] * (args['TRAIN']['lr_decay'] ** (epoch // args['TRAIN']['decay_step'])), LEARNING_RATE_CLIP)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
momentum = max(MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // args['TRAIN']['decay_step'])), BN_MOMENTUM_MAX)
if momentum < 0.01:
momentum = 0.01
if epoch % args['TRAIN']['decay_step'] == 0:
log_string('Learning rate:%f' % lr)
log_string('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x, momentum))
train_loss = 0
with tqdm(total=len(train_data_loader)) as pbar:
for i, batch in enumerate(train_data_loader):
optimizer.zero_grad()
seg_label = batch[0]['seg_labels']
complet_label = batch[1]['complet_labels']
invalid_voxels = batch[1]['complet_invalid']
seg_pred, complet_pred, sigma = classifier(batch)
seg_label = seg_label.cuda()
complet_label = complet_label.cuda()
loss, loss_seg, loss_complet = criteria(seg_pred, seg_label, seg_labelweights,
complet_pred, complet_label, compl_labelweights,
invalid_voxels, sigma)
'''Evaluation in trianing'''
pred_choice_complet = complet_pred[-1].data.max(1)[1].to('cpu')
complet_label = complet_label.to('cpu')
complet_label[invalid_voxels==1] = 255
correct_complet = pred_choice_complet.eq(complet_label.long().data).to('cpu')[(complet_label!=0)&(complet_label!=255)].sum()
pred_choice_seg = seg_pred.data.max(1)[1].to('cpu')
seg_label = seg_label.to('cpu')
correct_seg = pred_choice_seg.eq(seg_label.long().data).to('cpu').sum()
batch_loss = loss.cpu().item()
train_loss += batch_loss
loss.backward()
optimizer.step()
if i % 1000 == 0 and i > 0:
torch.save(classifier.state_dict(), '%s/model_latest.pth' % experiment_dir)
pbar.set_description('CLoss %.2f, SLoss %.2f, CAcc %.2f, SAcc %.2f' %
(loss_complet.item(),
loss_seg.item(),
correct_complet.item() / float(complet_label[(complet_label!=0)&(complet_label!=255)].size()[0]),
correct_seg.item() / float(seg_label.size()[0])))
pbar.update(1)
if args['GENERAL']['debug'] and i > 10:
break
log_string('Train Loss: %.3f' % (train_loss / len(train_data_loader)))
with torch.no_grad():
classifier.eval()
complet_evaluator = iouEval(NUM_CLASS_COMPLET, [])
seg_evaluator = iouEval(NUM_CLASS_SEG, [])
epsilon = np.finfo(np.float32).eps
with tqdm(total=len(val_data_loader)) as pbar:
for i, batch in enumerate(val_data_loader):
seg_label = batch[0]['seg_labels']
complet_label = batch[1]['complet_labels']
invalid_voxels = batch[1]['complet_invalid']
try:
seg_pred, complet_pred, _ = classifier(batch)
except:
print('Error in inference!!')
continue
seg_label = seg_label.cuda()
complet_label = complet_label.cuda()
pred_choice_complet = complet_pred[-1].data.max(1)[1].to('cpu')
complet_label = complet_label.to('cpu')
pred_choice_seg = seg_pred.data.max(1)[1].to('cpu').data.numpy()
seg_label = seg_label.to('cpu').data.numpy()
complet_label = complet_label.data.numpy()
pred_choice_complet = pred_choice_complet.numpy()
invalid_voxels = invalid_voxels.data.numpy()
masks = get_eval_mask(complet_label, invalid_voxels)
target = complet_label[masks]
pred = pred_choice_complet[masks]
pred_choice_seg = pred_choice_seg[seg_label != -100]
seg_label = seg_label[seg_label != -100]
complet_evaluator.addBatch(pred.astype(int), target.astype(int))
seg_evaluator.addBatch(pred_choice_seg.astype(int), seg_label.astype(int))
pbar.update(1)
if args['GENERAL']['debug'] and i > 10:
break
log_string("\n ========================== COMPLETION RESULTS ========================== ")
_, class_jaccard = complet_evaluator.getIoU()
m_jaccard = class_jaccard[1:].mean()
ignore = [0]
# print also classwise
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
log_string('IoU class {i:} [{class_str:}] = {jacc:.3f}'.format(
i=i, class_str=class_strings[class_inv_remap[i]], jacc=jacc*100))
# compute remaining metrics.
conf = complet_evaluator.get_confusion()
precision = np.sum(conf[1:, 1:]) / (np.sum(conf[1:, :]) + epsilon)
recall = np.sum(conf[1:, 1:]) / (np.sum(conf[:, 1:]) + epsilon)
acc_cmpltn = (np.sum(conf[1:, 1:])) / (np.sum(conf) - conf[0, 0])
mIoU_ssc = m_jaccard
log_string("Precision =\t" + str(np.round(precision * 100, 2)) + '\n' +
"Recall =\t" + str(np.round(recall * 100, 2)) + '\n' +
"IoU Cmpltn =\t" + str(np.round(acc_cmpltn * 100, 2)) + '\n' +
"mIoU SSC =\t" + str(np.round(mIoU_ssc * 100, 2)))
log_string("\n ========================== SEGMENTATION RESULTS ========================== ")
_, class_jaccard = seg_evaluator.getIoU()
m_jaccard = class_jaccard.mean()
for i, jacc in enumerate(class_jaccard):
log_string('IoU class {i:} [{class_str:}] = {jacc:.3f}'.format(
i=i, class_str=seg_label_to_cat[i], jacc=jacc*100))
log_string('Eval point avg class IoU: %f' % (m_jaccard*100))
if best_iou_sem_complt < mIoU_ssc:
best_iou_sem_complt = mIoU_ssc
if best_iou_complt < acc_cmpltn:
best_iou_complt = acc_cmpltn
if best_iou_seg < m_jaccard:
best_iou_seg = m_jaccard
torch.save(classifier.state_dict(), '%s/model_segiou_%.4f_compltiou_%.4f_epoch%d.pth' % (experiment_dir, best_iou_seg, mIoU_ssc, epoch+1))
log_string('\nBest segmentation IoU: %f' % (best_iou_seg * 100))
log_string('Best semantic completion IoU: %f' % (best_iou_sem_complt * 100))
log_string('Best completion IoU: %f' % (best_iou_complt * 100))
global_epoch += 1
log_string('Done!')
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = args['gpu']
main(args)