-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota2.0_v15.py
75 lines (61 loc) · 1.95 KB
/
cfgs_res50_dota2.0_v15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0,1,2"
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 40000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA2.0'
CLASS_NUM = 18
# model
# backbone
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
ANGLE_RANGE = 180
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 1.0 / 5.0
REG_LOSS_MODE = None
VERSION = 'RetinaNet_DOTA2.0_2x_20210504'
"""
retinanet-180
FLOPs: 865678480; Trainable params: 33148131
This is your evaluation result for task 1:
mAP: 0.43069494957862986
ap of each class:
plane:0.7511935607921781,
baseball-diamond:0.47014450290932247,
bridge:0.337831596208814,
ground-track-field:0.5641908529585304,
small-vehicle:0.3357549886530301,
large-vehicle:0.3149136163232269,
ship:0.4352201923571177,
tennis-court:0.719417829945509,
basketball-court:0.5321146014976036,
storage-tank:0.49831325441562196,
soccer-ball-field:0.40461147028865235,
roundabout:0.49565498483846526,
harbor:0.3477528948290374,
swimming-pool:0.49707150306239245,
helicopter:0.4399022806906489,
container-crane:0.10935441370223979,
airport:0.4230066364666493,
helipad:0.07605991247629705
The submitted information is :
Description: RetinaNet_DOTA2.0_2x_20210504_104w
Username: sjtu-deter
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""