-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota2.0_r3det_kf_v4.py
64 lines (48 loc) · 2.08 KB
/
cfgs_res50_dota2.0_r3det_kf_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1 # r3det only support 1
GPU_GROUP = '0,1,2,3'
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 40000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA2.0'
CLASS_NUM = 18
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
NUM_REFINE_STAGE = 1
# sample
REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7]
REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6]
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 5.0
VERSION = 'RetinaNet_DOTA2.0_R3Det_KF_2x_20210912'
"""
r3det + kfiou (exp(1-IoU)-1)
loss = (loss_1.reshape([n, 1]) + loss_2).reshape([n*n,1])
loss = sum(loss)
loss /= n
FLOPs: 1269567351; Trainable params: 37921786
This is your evaluation result for task 1:
mAP: 0.5041408791213118
ap of each class: plane:0.7956770809019875, baseball-diamond:0.4944565683803126, bridge:0.40319549402405697, ground-track-field:0.5866262451680978, small-vehicle:0.43356455097397906, large-vehicle:0.5267194446774651, ship:0.5981167704578747, tennis-court:0.779570922426722, basketball-court:0.6127302248493062, storage-tank:0.5785358709898982, soccer-ball-field:0.44872732145129846, roundabout:0.5019848645775529, harbor:0.4363876875131218, swimming-pool:0.5622704109974263, helicopter:0.5521002590451737, container-crane:0.1489275613805301, airport:0.4650029265863282, helipad:0.1499416197824809
The submitted information is :
Description: RetinaNet_DOTA2.0_R3Det_KF_2x_20210912_104w
Username: sjtu-deter
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""