-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota2.0_bcd_v6.py
76 lines (61 loc) · 1.98 KB
/
cfgs_res50_dota2.0_bcd_v6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0"
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 40000
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_EPOCH = 1. / 8.
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA2.0'
CLASS_NUM = 18
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 2.0
BCD_TAU = 2.0
BCD_FUNC = 0 # 0: sqrt 1: log
VERSION = 'RetinaNet_DOTA2.0_BCD_2x_20210723'
"""
RetinaNet-H + 1-1/(sqrt(bcd)+2)
FLOPs: 487525261; Trainable params: 33148131
This is your evaluation result for task 1:
mAP: 0.4748251390678757
ap of each class:
plane:0.7694004758275651,
baseball-diamond:0.4633958753542787,
bridge:0.39140982919175676,
ground-track-field:0.5911176240553634,
small-vehicle:0.41513007763044857,
large-vehicle:0.4719015966001979,
ship:0.5700450139195067,
tennis-court:0.7799866191766394,
basketball-court:0.567746193623308,
storage-tank:0.5067637510814136,
soccer-ball-field:0.36000188921274584,
roundabout:0.5053053207383681,
harbor:0.4518474589586364,
swimming-pool:0.5247063138022362,
helicopter:0.49441694419726545,
container-crane:0.12217758007758465,
airport:0.45779563157266656,
helipad:0.10370430820178039
The submitted information is :
Description: RetinaNet_DOTA2.0_BCD_2x_20210723_52w
Username: sjtu-deter
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""