-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota1.5_r3det_v1.py
75 lines (59 loc) · 1.96 KB
/
cfgs_res50_dota1.5_r3det_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1 # r3det only support 1
GPU_GROUP = '0,1,2'
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 32000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA1.5'
CLASS_NUM = 16
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
NUM_REFINE_STAGE = 1
# sample
REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7]
REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6]
# loss
USE_IOU_FACTOR = False
VERSION = 'RetinaNet_DOTA1.5_R3Det_2x_20210409'
"""
R3Det
FLOPs: 1120443822; Trainable params: 41428686
This is your evaluation result for task 1:
mAP: 0.6291430305933157
ap of each class:
plane:0.8021795832205134,
baseball-diamond:0.7555048021776687,
bridge:0.4236376011997379,
ground-track-field:0.6521534153938353,
small-vehicle:0.502202148805237,
large-vehicle:0.7048027758323485,
ship:0.7957512997061391,
tennis-court:0.8950947111351538,
basketball-court:0.750823027863591,
storage-tank:0.6627297716213577,
soccer-ball-field:0.5411447953750608,
roundabout:0.6927894787515215,
harbor:0.5536907761315658,
swimming-pool:0.66129391387984,
helicopter:0.573074803983895,
container-crane:0.09941558441558442
The submitted information is :
Description: RetinaNet_DOTA1.5_R3Det_2x_20210409_108.8w
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""