-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota_atan_v5.py
57 lines (42 loc) · 1.84 KB
/
cfgs_res50_dota_atan_v5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0,1,2"
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 27000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
# backbone
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
ANGLE_RANGE = 180
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 1.0 / 5.0
REG_LOSS_MODE = None
VERSION = 'RetinaNet_DOTA_2x_20210727'
"""
RetinaNet-H + theta=atan(sin(theta)/cos(theta)) + 180, sin^2(theta) + cos^2(theta) = 1
[-90, 90] sin in [-1, 1] cos in [0, 1]
FLOPs: 862200848; Trainable params: 33051321
This is your result for task 1:
mAP: 0.6532556290645889
ap of each class: plane:0.8879437201698563, baseball-diamond:0.7424327258991498, bridge:0.39876196060550234, ground-track-field:0.6762748480559626, small-vehicle:0.6215548266972836, large-vehicle:0.4303887925448767, ship:0.6997482727279865, tennis-court:0.8981939964160642, basketball-court:0.8132157603668859, storage-tank:0.7918250070749778, soccer-ball-field:0.532450059662894, roundabout:0.6126948545190352, harbor:0.5047173472183413, swimming-pool:0.651816449043771, helicopter:0.5368158149662463
The submitted information is :
Description: RetinaNet_DOTA_2x_20210727_70.2w_v1
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""