-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota_r3det_kl_v2.py
75 lines (60 loc) · 1.89 KB
/
cfgs_res50_dota_r3det_kl_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1 # r3det only support 1
GPU_GROUP = '0,1,2,3'
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 27000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
NUM_REFINE_STAGE = 1
# sample
REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7]
REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6]
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 2.0
KL_TAU = 2.0
KL_FUNC = 0 # 0: sqrt 1: log
VERSION = 'RetinaNet_DOTA_R3Det_KL_2x_20210204'
"""
r3det + kl + sqrt tau=2
FLOPs: 1032041748; Trainable params: 37769656
This is your result for task 1:
mAP: 0.7173336572446897
ap of each class:
plane:0.8868781615672788,
baseball-diamond:0.7471104120398441,
bridge:0.4833580754517835,
ground-track-field:0.6546529008163676,
small-vehicle:0.7508776727371242,
large-vehicle:0.7888314834933955,
ship:0.8652117632464216,
tennis-court:0.8937726660697703,
basketball-court:0.8002827781707408,
storage-tank:0.8208248945650195,
soccer-ball-field:0.567949886040721,
roundabout:0.6151266246875117,
harbor:0.6548357599178879,
swimming-pool:0.6777451703578441,
helicopter:0.5525466095086348
The submitted information is :
Description: RetinaNet_DOTA_R3Det_KL_2x_20210204_102.6w
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""