-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota_r3det_bcd_v2.py
105 lines (84 loc) · 2.75 KB
/
cfgs_res50_dota_r3det_bcd_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
# schedule
BATCH_SIZE = 1 # r3det only support 1
GPU_GROUP = '0,1,2'
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 27000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
NUM_REFINE_STAGE = 1
# sample
REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7]
REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6]
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 2.0
BCD_TAU = 2.0
BCD_FUNC = 0 # 0: sqrt 1: log
VERSION = 'RetinaNet_DOTA_R3Det_BCD_2x_20210810'
"""
r3det + bcd
FLOPs: 1032041778; Trainable params: 37769656
This is your result for task 1:
mAP: 0.7222480357984923
ap of each class:
plane:0.8898756824231284,
baseball-diamond:0.7676544745174824,
bridge:0.47795129029262956,
ground-track-field:0.663397739245387,
small-vehicle:0.7622637231241527,
large-vehicle:0.7920074475173311,
ship:0.8689683384597622,
tennis-court:0.8981123558740035,
basketball-court:0.8004899297929988,
storage-tank:0.8306977181036257,
soccer-ball-field:0.601055761432403,
roundabout:0.612028212429282,
harbor:0.6524181685640427,
swimming-pool:0.6734202558055511,
helicopter:0.5433794393956056
The submitted information is :
Description: RetinaNet_DOTA_R3Det_BCD_2x_20210810_70.2w
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
This is your result for task 1:
mAP : 0.7280794733915879
ap of each class :
plane:0.8932453918456619,
baseball-diamond:0.7735528462449153,
bridge:0.47832413472539115,
ground-track-field:0.6652754312793525,
small-vehicle:0.7679064586789398,
large-vehicle:0.8013642038470755,
ship:0.8739410214974208,
tennis-court:0.9081478484603636,
basketball-court:0.8290351304685135,
storage-tank:0.8340053848928062,
soccer-ball-field:0.601594478455151,
roundabout:0.6149752753172619,
harbor:0.6578050522157939,
swimming-pool:0.6786535176826928,
helicopter:0.543365925262477
The submitted information is :
Description: RetinaNet_DOTA_R3Det_BCD_2x_20210810_70.2w_cpunms
Username: WWT-SJTU
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue, wangwentao
"""