-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota_bcd_v3.py
68 lines (56 loc) · 1.81 KB
/
cfgs_res50_dota_bcd_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.schedules.schedule_1x import *
from configs._base_.datasets.dota_detection import *
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0"
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 27000
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_EPOCH = 1. / 8.
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 2.0
BCD_TAU = 2.0
BCD_FUNC = 0 # 0: sqrt 1: log
VERSION = 'RetinaNet_DOTA_BCD_1x_20210721'
"""
RetinaNet-H + 1-1/(sqrt(bcd)+2)
FLOPs: 484911765; Trainable params: 33002916
This is your result for task 1:
mAP: 0.7123346377868429
ap of each class:
plane:0.8887915974633945,
baseball-diamond:0.7580879255573998,
bridge:0.4515840080232722,
ground-track-field:0.6646777402763645,
small-vehicle:0.7404309877818988,
large-vehicle:0.7219149415987607,
ship:0.8406801553214951,
tennis-court:0.9009695293086886,
basketball-court:0.8126487421623486,
storage-tank:0.8022797894263551,
soccer-ball-field:0.5677260871453866,
roundabout:0.6451663275717179,
harbor:0.650692992037595,
swimming-pool:0.6591555368760995,
helicopter:0.5802132062518686
The submitted information is :
Description: RetinaNet_DOTA_BCD_1x_20210721_35.1w
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""