forked from c-white/athenak_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_reduced_gr_rad.py
executable file
·170 lines (144 loc) · 5.37 KB
/
plot_reduced_gr_rad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#! /usr/bin/env python3
"""
Script for plotting reduced AthenaK data.
Usage:
[python3] plot_reduced_gr_rad.py <data_file> <variable> <output_file> [options]
<data_file> should be the output of reduce_gr_rad.py.
<variable> should be any of the cell quantities saved by
reduce_gr_rad.py.
<output_file> will be overwritten with a plot of the desired quantity. If
<output_file> is simply "show", the script will open a live Matplotlib viewing
window.
Optional inputs include:
--r_max: maximum radial coordinate to plot
-c: colormap recognized by Matplotlib
-n: colormap normalization (e.g., "-n log") if not linear
--vmin, --vmax: limits of colorbar if not the full range of data
--notex: flag to disable Latex typesetting of labels
--ergosphere: flag for outlining boundary of ergosphere in GR simulation
--ergosphere_color, horizon_mask_color: color choices
Run "plot_reduced_gr_rad.py -h" to see a full description of inputs.
"""
# Python standard modules
import argparse
# Numerical modules
import numpy as np
# Load plotting modules
import matplotlib
# Main function
def main(**kwargs):
# Load additional plotting modules
if kwargs['output_file'] != 'show':
matplotlib.use('agg')
if not kwargs['notex']:
matplotlib.rc('text', usetex=True)
import matplotlib.colors as colors
import matplotlib.patches as patches
import matplotlib.pyplot as plt
# Plotting parameters
ergosphere_num_points = 129
ergosphere_line_style = '-'
ergosphere_line_width = 1.0
x1_labelpad = 2.0
x2_labelpad = 2.0
dpi = 300
# Read data
data = np.load(kwargs['data_file'])
try:
quantity = data[kwargs['variable']]
except KeyError:
raise RuntimeError('{0} not in file.'.format(kwargs['variable']))
a = data['a']
rf = data['rf']
thf = data['thf']
# Process data
quantity_right = quantity
quantity_left = quantity[::-1,:]
thf_right = thf
thf_left = 2.0*np.pi - thf[::-1]
xc_right = rf[None,:] * np.sin(thf_right[:,None])
xc_left = rf[None,:] * np.sin(thf_left[:,None])
zc_right = rf[None,:] * np.cos(thf_right[:,None])
zc_left = rf[None,:] * np.cos(thf_left[:,None])
# Calculate colors
if kwargs['vmin'] is None:
vmin = np.nanmin(quantity)
else:
vmin = kwargs['vmin']
if kwargs['vmax'] is None:
vmax = np.nanmax(quantity)
else:
vmax = kwargs['vmax']
# Choose colormap norm
if kwargs['norm'] == 'linear':
norm = colors.Normalize(vmin, vmax)
vmin = None
vmax = None
elif kwargs['norm'] == 'log':
norm = colors.LogNorm(vmin, vmax)
vmin = None
vmax = None
else:
norm = kwargs['norm']
# Prepare figure
plt.figure()
# Plot data
plt.pcolormesh(xc_right, zc_right, quantity_right, cmap=kwargs['cmap'], norm=norm, vmin=vmin, vmax=vmax)
plt.pcolormesh(xc_left, zc_left, quantity_left, cmap=kwargs['cmap'], norm=norm, vmin=vmin, vmax=vmax)
# Make colorbar
plt.colorbar()
# Mask horizon
r_hor = 1.0 + (1.0 - a ** 2) ** 0.5
full_width = 2.0 * (r_hor ** 2 + a ** 2) ** 0.5
full_height = 2.0 * ((r_hor ** 2 + a ** 2) / (1.0 + a ** 2 / r_hor ** 2)) ** 0.5
horizon_mask = \
patches.Circle((0.0, 0.0), r_hor, facecolor=kwargs['horizon_mask_color'], edgecolor='none')
plt.gca().add_artist(horizon_mask)
# Mark ergosphere
if kwargs['ergosphere']:
th_plot = np.linspace(0.0, np.pi, ergosphere_num_points)
th_plot = np.concatenate((th_plot, 2.0*np.pi - th_plot[-2::-1]))
sth_plot = np.sin(th_plot)
cth_plot = np.cos(th_plot)
r_plot = 1.0 + np.sqrt(1.0 - a ** 2 * cth_plot ** 2)
x_plot = r_plot * sth_plot
y_plot = r_plot * cth_plot
plt.plot(x_plot, y_plot, linestyle=ergosphere_line_style, linewidth=ergosphere_line_width, \
color=kwargs['ergosphere_color'])
# Adjust axes
r_max = rf[-1]
if kwargs['r_max'] is not None:
r_max = kwargs['r_max']
plt.xlim((-r_max, r_max))
plt.ylim((-r_max, r_max))
plt.xlabel(r'$r \sin\theta$', labelpad=x1_labelpad)
plt.ylabel(r'$r \cos\theta$', labelpad=x2_labelpad)
# Adjust layout
plt.tight_layout()
# Save or display figure
if kwargs['output_file'] != 'show':
plt.savefig(kwargs['output_file'], dpi=dpi)
else:
plt.show()
# Parse inputs and execute main function
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('data_file', help='name of input file, possibly including path')
parser.add_argument('variable', help='name of variable to be plotted')
parser.add_argument('output_file', \
help='name of output to be (over)written; use "show" to show interactive plot instead')
parser.add_argument('--r_max', type=float, help='maximum radial coordinate to plot')
parser.add_argument('-c', '--cmap', help='name of Matplotlib colormap to use')
parser.add_argument('-n', '--norm', help='name of Matplotlib norm to use')
parser.add_argument('--vmin', type=float, help='colormap minimum')
parser.add_argument('--vmax', type=float, help='colormap maximum')
parser.add_argument('--notex', action='store_true', \
help='flag indicating LaTeX integration is not to be used')
parser.add_argument('--ergosphere', action='store_true', \
help='flag indicating black hole ergosphere should be marked')
parser.add_argument('--ergosphere_color', default='gray', \
help='color string for ergosphere marker')
parser.add_argument('--horizon_mask_color', default='k', \
help='color string for event horizon mask')
args = parser.parse_args()
main(**vars(args))