forked from c-white/athenak_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_bh_magnetization.py
executable file
·280 lines (244 loc) · 10.1 KB
/
calculate_bh_magnetization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#! /usr/bin/env python3
"""
Script for calculating average magnetization in an AthenaK GRMHD data dump.
Usage:
[python3] calculate_bh_magnetization.py <input_file> [options]
Example:
~/athenak/vis/python/calculate_bh_magnetization.py basename.prim.00000.bin
<input_file> can be any standard AthenaK .bin data dump that uses GR (Cartesian
Kerr-Schild coordinates) and MHD.
Options include:
--r_max: maximum radial coordinate to consider in the analysis
--rho_min: minimum code density to consider in the analysis
Run "calculate_bh_magnetization.py -h" to see a full description of inputs.
The results will be printed to screen. They include volume- and mass-weighted
averages of plasma sigma and beta^{-1} over the region of interest.
The domain extends from the outer horizon to r <= r_max (default: infinity), and
counts cells with rho >= rho_min (default: 0). Volume weighting weights cells by
dV = sqrt(-g)*dx*dy*dv = dx*dy*dv. Mass weighting weights cells by dm = rho*dV.
Plasma sigma is defined as sigma = b_mu b^mu / rho. Plasma beta^{-1} is defined
as beta^{-1} = b_mu b^mu / (2 p_gas). Radiation is not considered in this
calculation.
"""
# Python standard modules
import argparse
import struct
# Numerical modules
import numpy as np
# Main function
def main(**kwargs):
# Parameters
variable_names = ('dens', 'eint', 'velx', 'vely', 'velz', 'bcc1', 'bcc2', 'bcc3')
# Prepare summed values
vol_sum = 0.0
mass_sum = 0.0
sigma_vol_sum = 0.0
sigma_mass_sum = 0.0
beta_inv_vol_sum = 0.0
beta_inv_mass_sum = 0.0
# Read data
with open(kwargs['filename'], 'rb') as f:
# Get file size
f.seek(0, 2)
file_size = f.tell()
f.seek(0, 0)
# Read header metadata
line = f.readline().decode('ascii')
if line != 'Athena binary output version=1.1\n':
raise RuntimeError('Unrecognized data file format.')
next(f)
next(f)
next(f)
line = f.readline().decode('ascii')
if line[:19] != ' size of location=':
raise RuntimeError('Could not read location size.')
location_size = int(line[19:])
line = f.readline().decode('ascii')
if line[:19] != ' size of variable=':
raise RuntimeError('Could not read variable size.')
variable_size = int(line[19:])
next(f)
line = f.readline().decode('ascii')
if line[:12] != ' variables:':
raise RuntimeError('Could not read variable names.')
variable_names_base = line[12:].split()
line = f.readline().decode('ascii')
if line[:16] != ' header offset=':
raise RuntimeError('Could not read header offset.')
header_offset = int(line[16:])
# Process header metadata
if location_size not in (4, 8):
raise RuntimeError('Only 4- and 8-byte integer types supported for location data.')
location_format = 'f' if location_size == 4 else 'd'
if variable_size not in (4, 8):
raise RuntimeError('Only 4- and 8-byte integer types supported for cell data.')
variable_format = 'f' if variable_size == 4 else 'd'
num_variables_base = len(variable_names_base)
variable_inds = []
for variable_name in variable_names:
if variable_name not in variable_names_base:
raise RuntimeError('{0} not found.'.format(variable_name))
variable_ind = 0
while variable_names_base[variable_ind] != variable_name:
variable_ind += 1
variable_inds.append(variable_ind)
variable_names_sorted = [name for _, name in sorted(zip(variable_inds, variable_names))]
variable_inds_sorted = [ind for ind, _ in sorted(zip(variable_inds, variable_names))]
# Read input file metadata
input_data = {}
start_of_data = f.tell() + header_offset
while f.tell() < start_of_data:
line = f.readline().decode('ascii')
if line[0] == '#':
continue
if line[0] == '<':
section_name = line[1:-2]
input_data[section_name] = {}
continue
key, val = line.split('=', 1)
input_data[section_name][key.strip()] = val.split('#', 1)[0].strip()
# Extract number of ghost cells from input file metadata
try:
num_ghost = int(input_data['mesh']['nghost'])
except:
raise RuntimeError('Unable to find number of ghost cells in input file.')
# Extract adiabatic index from input file metadata
try:
gamma_adi = float(input_data['hydro']['gamma'])
except:
try:
gamma_adi = float(input_data['mhd']['gamma'])
except:
raise RuntimeError('Unable to find adiabatic index in input file.')
# Extract black hole spin from input file metadata
try:
a = float(input_data['coord']['a'])
a2 = a ** 2
except:
raise RuntimeError('Unable to find black hole spin in input file.')
# Prepare lists to hold results
quantities = {}
for name in variable_names_sorted:
quantities[name] = []
# Go through blocks
first_time = True
while f.tell() < file_size:
# Read and process grid structure data
if first_time:
block_indices = [block_index - num_ghost for block_index in struct.unpack('@6i', f.read(24))]
block_nx = block_indices[1] - block_indices[0] + 1
block_ny = block_indices[3] - block_indices[2] + 1
block_nz = block_indices[5] - block_indices[4] + 1
cells_per_block = block_nz * block_ny * block_nx
block_cell_format = '=' + str(cells_per_block) + variable_format
variable_data_size = cells_per_block * variable_size
first_time = False
else:
f.seek(24, 1)
f.seek(16, 1)
# Read and process coordinate data
block_lims = struct.unpack('=6' + location_format, f.read(6 * location_size))
xf, dx = np.linspace(block_lims[0], block_lims[1], block_nx + 1, retstep=True)
yf, dy = np.linspace(block_lims[2], block_lims[3], block_ny + 1, retstep=True)
zf, dz = np.linspace(block_lims[4], block_lims[5], block_nz + 1, retstep=True)
x = 0.5 * (xf[:-1] + xf[1:])
y = 0.5 * (yf[:-1] + yf[1:])
z = 0.5 * (zf[:-1] + zf[1:])
# Read cell data
cell_data_start = f.tell()
skip_block = False
for ind, name in zip(variable_inds_sorted, variable_names_sorted):
f.seek(cell_data_start + ind * variable_data_size, 0)
quantities[name] = np.array(struct.unpack(block_cell_format, f.read(variable_data_size))).reshape(block_nz, block_ny, block_nx)
if name == 'dens' and np.max(quantities[name]) < kwargs['rho_min']:
skip_block = True
continue
f.seek((num_variables_base - ind - 1) * variable_data_size, 1)
if skip_block:
continue
# Calculate radial coordinate
rr2 = np.maximum(x[None,None,:] ** 2 + y[None,:,None] ** 2 + z[:,None,None] ** 2, 1.0)
r2 = 0.5 * (rr2 - a2 + np.sqrt((rr2 - a2) ** 2 + 4.0 * a2 * z[:,None,None] ** 2))
r = np.sqrt(r2)
if np.min(r) > kwargs['r_max']:
continue
# Calculate volume and mass
rho = quantities['dens']
vol = np.full_like(r, dx * dy * dz)
vol = np.where(r < 1.0 + (1.0 - a2) ** 0.5, np.nan, vol)
vol = np.where(r > kwargs['r_max'], np.nan, vol)
vol = np.where(rho < kwargs['rho_min'], np.nan, vol)
mass = rho * vol
# Calculate metric
factor = 2.0 * r2 * r / (r2 ** 2 + a2 * z[:,None,None] ** 2)
l1 = (r * x[None,None,:] + a * y[None,:,None]) / (r2 + a2)
l2 = (r * y[None,:,None] - a * x[None,None,:]) / (r2 + a2)
l3 = z[:,None,None] / r
g_00 = factor - 1.0
g_01 = factor * l1
g_02 = factor * l2
g_03 = factor * l3
g_11 = factor * l1 ** 2 + 1.0
g_12 = factor * l1 * l2
g_13 = factor * l1 * l3
g_22 = factor * l2 ** 2 + 1.0
g_23 = factor * l2 * l3
g_33 = factor * l3 ** 2 + 1.0
g00 = -factor - 1.0
g01 = factor * l1
g02 = factor * l2
g03 = factor * l3
alpha = 1.0 / np.sqrt(-g00)
beta1 = -g01 / g00
beta2 = -g02 / g00
beta3 = -g03 / g00
# Calculate gas pressure
pgas = quantities['eint'] * (gamma_adi - 1.0)
# Calculate velocity
uu1 = quantities['velx']
uu2 = quantities['vely']
uu3 = quantities['velz']
uu0 = np.sqrt(1.0 + g_11 * uu1 ** 2 + 2.0 * g_12 * uu1 * uu2 + 2.0 * g_13 * uu1 * uu3 + g_22 * uu2 ** 2 + 2.0 * g_23 * uu2 * uu3 + g_33 * uu3 ** 2)
u0 = uu0 / alpha
u1 = uu1 - beta1 * u0
u2 = uu2 - beta2 * u0
u3 = uu3 - beta3 * u0
u_0 = g_00 * u0 + g_01 * u1 + g_02 * u2 + g_03 * u3
u_1 = g_01 * u0 + g_11 * u1 + g_12 * u2 + g_13 * u3
u_2 = g_02 * u0 + g_12 * u1 + g_22 * u2 + g_23 * u3
u_3 = g_03 * u0 + g_13 * u1 + g_23 * u2 + g_33 * u3
# Calculate magnetic field
bb1 = quantities['bcc1']
bb2 = quantities['bcc2']
bb3 = quantities['bcc3']
b0 = u_1 * bb1 + u_2 * bb2 + u_3 * bb3
b1 = (bb1 + b0 * u1) / u0
b2 = (bb2 + b0 * u2) / u0
b3 = (bb3 + b0 * u3) / u0
b_0 = g_00 * b0 + g_01 * b1 + g_02 * b2 + g_03 * b3
b_1 = g_01 * b0 + g_11 * b1 + g_12 * b2 + g_13 * b3
b_2 = g_02 * b0 + g_12 * b1 + g_22 * b2 + g_23 * b3
b_3 = g_03 * b0 + g_13 * b1 + g_23 * b2 + g_33 * b3
pmag = (b_0 * b0 + b_1 * b1 + b_2 * b2 + b_3 * b3) / 2.0
# Add to summed values
vol_sum += np.nansum(vol)
mass_sum += np.nansum(mass)
sigma_vol_sum += np.nansum(2.0 * pmag / rho * vol)
sigma_mass_sum += np.nansum(2.0 * pmag / rho * mass)
beta_inv_vol_sum += np.nansum(pmag / pgas * vol)
beta_inv_mass_sum += np.nansum(pmag / pgas * mass)
# Report results
print('')
print('<sigma>_vol = ' + repr(sigma_vol_sum / vol_sum))
print('<sigma>_mass = ' + repr(sigma_mass_sum / mass_sum))
print('<beta_inv>_vol = ' + repr(beta_inv_vol_sum / vol_sum))
print('<beta_inv>_mass = ' + repr(beta_inv_mass_sum / mass_sum))
print('')
# Process inputs and execute main function
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename', help='name of primitive file to analyze')
parser.add_argument('--r_max', type=float, default=np.inf, help='maximum radius to analyze')
parser.add_argument('--rho_min', type=float, default=0.0, help='minimum density to analyze')
args = parser.parse_args()
main(**vars(args))