-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
151 lines (119 loc) · 5.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# ================================================================ #
# Define the Network #
# ================================================================ #
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square, you can specify with a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
'''Result:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
'''
# The learnable parameters of a model are returned by `net.parameters()`
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
# Let’s try a random 32x32 input. Note: expected input size of this net (LeNet) is 32x32. To use this net on the
# MNIST dataset, please resize the images from the dataset to 32x32
input = torch.randn(1, 1, 32, 32) # dummy image
out = net(input)
print(out)
'''Result:
tensor([[-0.0381, -0.1305, 0.0026, -0.1244, 0.0164, -0.0031, -0.0207, -0.0518,
0.0536, -0.0641]], grad_fn=<AddmmBackward0>)
'''
# Zero the gradient buffers of all parameters and backprops with random gradients:
net.zero_grad()
out.backward(torch.randn(1, 10))
# ================================================================ #
# Loss Function #
# ================================================================ #
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
'''Result:
tensor(0.8491, grad_fn=<MseLossBackward0>)
'''
'''If you follow loss in the backward direction, using its .grad_fn attribute, you will see a graph of computations that
looks like this:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> flatten -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
'''
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
'''Result:
<MseLossBackward0 object at 0x7f0e70779f60>
<AddmmBackward0 object at 0x7f0e70779080>
<AccumulateGrad object at 0x7f0e70779080>
'''
# ================================================================ #
# Backpropagation #
# ================================================================ #
# Now we shall call loss.backward(), and have a look at conv1’s bias gradients before and after the backward.
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
'''Result:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0103, -0.0144, -0.0100, 0.0006, -0.0013, -0.0019])
'''
# ================================================================ #
# Update the weights #
# ================================================================ #
# The simplest update rule used in practice is the Stochastic Gradient Descent (SGD): `weight = weight - learning_rate * gradient`
# We can implement this using simple Python code:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
"""
However, as you use neural networks, you want to use various different update rules such as SGD, Nesterov-SGD,
Adam, RMSProp, etc. To enable this, we built a small package: torch.optim that implements all these methods. Using it
is very simple:
"""
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update