-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathops.py
104 lines (94 loc) · 2.9 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import os
import time
import h5py
import keras as K
import keras.layers as L
from data_util import *
from models_c import *
import matplotlib.pyplot as plt
def cvt_map(pred, show=False):
"""
convert prediction percent to map
"""
gth = tiff.imread(os.path.join(PATH, gth_test))
# gth=read_mat(PATH,gth_test,'mask_test')
pred = np.argmax(pred, axis=1)
pred = np.asarray(pred, dtype=np.int8) + 1
print(pred)
index = np.load(os.path.join(SAVA_PATH, 'index.npy'))
pred_map = np.zeros_like(gth)
cls = []
for i in range(index.shape[1]):
pred_map[index[0, i], index[1, i]] = pred[i]
cls.append(gth[index[0, i], index[1, i]])
cls = np.asarray(cls, dtype=np.int8)
if show:
plt.imshow(pred_map)
plt.figure()
plt.imshow(gth)
plt.show()
# tiff.imsave('results/Houston_lidar.tif',pred_map)
count = np.sum(pred == cls)
mx = confusion(pred - 1, cls - 1)
print(mx)
acc = 100.0 * count / np.sum(gth != 0)
kappa = compute_Kappa(mx)
return acc, kappa
def confusion(pred, labels):
"""
make confusion matrix
"""
mx = np.zeros((NUM_CLASS, NUM_CLASS))
if len(pred.shape) == 2:
pred = np.asarray(np.argmax(pred, axis=1))
for i in range(labels.shape[0]):
mx[pred[i], labels[i]] += 1
mx = np.asarray(mx, dtype=np.int16)
np.savetxt('confusion.txt', mx, delimiter=" ", fmt="%s")
return mx
def compute_Kappa(confusion_matrix):
"""
TODO =_=
"""
N = np.sum(confusion_matrix)
N_observed = np.trace(confusion_matrix)
Po = 1.0 * N_observed / N
h_sum = np.sum(confusion_matrix, axis=0)
v_sum = np.sum(confusion_matrix, axis=1)
Pe = np.sum(np.multiply(1.0 * h_sum / N, 1.0 * v_sum / N))
kappa = (Po - Pe) / (1.0 - Pe)
return kappa
def eval(pred, gth, show=False):
"""
evaluate between prediction and ground truth
return the over accuracy
"""
pred = np.argmax(pred, 4)
h, w = gth.shape
if not h % ksize == 0:
hm = ((h // ksize) + 1) * ksize
if not w % ksize == 0:
wm = ((w // ksize) + 1) * ksize
new_map = np.zeros(shape=(hm, wm))
for i in range(pred.shape[1]):
for j in range(pred.shape[0]):
new_map[i * ksize:(i + 1) * ksize, j *
ksize:(j + 1) * ksize] = pred[j, i, :, :]
new_map = np.asarray(new_map, dtype=np.int8)
new_map = new_map[0:h, 0:w]
cls_gth = np.zeros_like(gth)
cls_map = np.zeros_like(new_map)
cls_map[new_map != 0] = new_map[new_map != 0]
cls_gth[gth != 0] = gth[gth != 0]
count = np.sum(cls_gth == cls_map)
acc = 1.0 * count / np.sum(gth != 0)
if show:
plt.imshow(new_map)
plt.figure()
plt.imshow(gth)
plt.show()
return acc
def visual_model(model,imgname):
from keras.utils import plot_model
# plot_model(model, to_file=imgname, show_shapes=True)