-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels_c.py
68 lines (62 loc) · 2.56 KB
/
models_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import tensorflow as tf
import keras as K
import keras.layers as L
import numpy as np
import os
import time
import h5py
import argparse
import matplotlib.pyplot as plt
from data_util import *
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
# ===================cascade net=============
def small_cnn_branch(input_tensor, small_mode=True):
filters=[32,64,100,200,256]
conv0_spat=L.Conv2D(filters[2],(3,3),padding='same',activation='relu')(input_tensor)
conv0_spat=L.BatchNormalization(axis=-1)(conv0_spat)
conv1_spat=L.Conv2D(filters[2],(3,3),padding='same',activation='relu')(conv0_spat)
conv1_spat=L.BatchNormalization(axis=-1)(conv1_spat)
conv2_spat=L.Conv2D(filters[3],(1,1),padding='same',activation='relu')(conv1_spat)
conv2_spat=L.BatchNormalization(axis=-1)(conv2_spat)
conv3_spat=L.Conv2D(filters[3],(1,1),padding='same',activation='relu')(conv2_spat)
conv3_spat=L.BatchNormalization(axis=-1)(conv3_spat)
pool1=L.MaxPool2D(pool_size=(2,2),padding='same')(conv3_spat)
Dense1=L.Dense(1024)(pool1)
Dense1=L.Activation('relu')(Dense1)
Dense1=L.Dropout(0.4)(Dense1)
Dense2=L.Dense(512)(Dense1)
Dense2=L.Activation('relu')(Dense2)
Dense2=L.Dropout(0.4)(Dense2)
conv7_spat=L.Flatten()(Dense2)
return conv7_spat
def pixel_branch(input_tensor):
filters = [8, 16, 32, 64, 96, 128]
# input_tensor=L.Permute((2,1))(input_tensor)
conv0 = L.Conv1D(filters[3], 11, padding='valid')(input_tensor)
conv0 = L.BatchNormalization(axis=-1)(conv0)
conv0 = L.advanced_activations.LeakyReLU(alpha=0.2)(conv0)
conv3 = L.Conv1D(filters[5], 3, padding='valid')(conv0)
# conv3 = L.BatchNormalization(axis=-1)(conv3)
conv3 = L.advanced_activations.LeakyReLU(alpha=0.2)(conv3)
conv3 = L.MaxPool1D(pool_size=2, padding='valid')(conv3)
conv3 = L.Flatten()(conv3)
# conv3 = L.Dense(192)(conv3)
return conv3
def merge_branch():
ksize = 2 * r + 1
filters = [64, 128, 256, 512]
hsi_in = L.Input((ksize, ksize, hchn))
hsi_pxin = L.Input((hchn, 1))
h_simple = small_cnn_branch(hsi_in, small_mode=False)
px_out = pixel_branch(hsi_pxin)
merge=L.concatenate([h_simple,px_out])
merge = L.Dropout(0.5)(merge)
logits = L.Dense(NUM_CLASS, activation='softmax')(merge)
model = K.models.Model([hsi_in,hsi_pxin], logits)
adam = K.optimizers.Adam(lr=0.00005)
model.compile(optimizer=adam,
loss='categorical_crossentropy', metrics=['acc'])
return model