forked from PufferAI/PufferLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpokemon_red_eval.py
executable file
·320 lines (254 loc) · 11.4 KB
/
pokemon_red_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# One-off demo for pokemon red because there isn't a clean way to put
# the custom map overlay logic into the clean_pufferl file and I want
# to keep that file as minimal as possible
from pufferlib import namespace
import numpy as np
import torch
from functools import partial
def map_updater():
import cv2
bg = cv2.imread('kanto_map_dsv.png')
return partial(make_pokemon_red_overlay, bg)
def make_pokemon_red_overlay(bg, counts):
nonzero = np.where(counts > 0, 1, 0)
scaled = np.clip(counts, 0, 1000) / 1000.0
# Convert counts to hue map
hsv = np.zeros((*counts.shape, 3))
hsv[..., 0] = 2*(1-scaled)/3
hsv[..., 1] = nonzero
hsv[..., 2] = nonzero
# Convert the HSV image to RGB
import matplotlib.colors as mcolors
overlay = 255*mcolors.hsv_to_rgb(hsv)
# Upscale to 16x16
kernel = np.ones((16, 16, 1), dtype=np.uint8)
overlay = np.kron(overlay, kernel).astype(np.uint8)
mask = np.kron(nonzero, kernel[..., 0]).astype(np.uint8)
mask = np.stack([mask, mask, mask], axis=-1).astype(bool)
# Combine with background
render = bg.copy().astype(np.int32)
render[mask] = 0.2*render[mask] + 0.8*overlay[mask]
render = np.clip(render, 0, 255).astype(np.uint8)
return render
def rollout(env_creator, env_kwargs, agent_creator, agent_kwargs, model_path=None, device='cuda', verbose=True):
env = env_creator(**env_kwargs)
if model_path is None:
agent = agent_creator(env, **agent_kwargs)
else:
agent = torch.load(model_path, map_location=device)
terminal = truncated = True
import cv2
bg = cv2.imread('kanto_map_dsv.png')
while True:
if terminal or truncated:
if verbose:
print('--- Reset ---')
ob, info = env.reset()
state = None
step = 0
return_val = 0
ob = torch.tensor(ob).unsqueeze(0).to(device)
with torch.no_grad():
if hasattr(agent, 'lstm'):
action, _, _, _, state = agent.get_action_and_value(ob, state)
else:
action, _, _, _ = agent.get_action_and_value(ob)
ob, reward, terminal, truncated, _ = env.step(action[0].item())
return_val += reward
counts_map = env.env.counts_map
if np.sum(counts_map) > 0 and step % 500 == 0:
overlay = make_pokemon_red_overlay(bg, counts_map)
cv2.imshow('Pokemon Red', overlay[1000:][::4, ::4])
cv2.waitKey(1)
if verbose:
print(f'Step: {step} Reward: {reward:.4f} Return: {return_val:.2f}')
if not env_kwargs['headless']:
env.render()
step += 1
# # One-off demo for pokemon red because there isn't a clean way to put
# # the custom map overlay logic into the clean_pufferl file and I want
# # to keep that file as minimal as possible
# import torch
# import cv2
# import numpy as np
# # import pathlib as Path
# from checkpoint_file_aggregator import read_checkpoint_logs
# import matplotlib.pyplot as plt
# import pandas as pd
# from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# BG = cv2.imread('kanto_map_dsv.png')
# # import io
# # from PIL import Image
# # from memory_profiler import profile
# # import tracemalloc
# # tracemalloc.start()
# # snapshot1=tracemalloc.take_snapshot()
# # bg = cv2.imread('kanto_map_dsv.png') # 142 MiB
# # @profile
# # Code previously being used to write the aggregated checkpoints data to image using cv2.imwrite
# def create_data_image(width, height):
# data_image = np.zeros((height, width, 3), dtype=np.uint8)
# return data_image
# def get_text_width(text, fontdict):
# return len(text) * fontdict['fontsize'] * 1.5 # Adjust the multiplier as needed (probably don't)
# # snapshot2=tracemalloc.take_snapshot()
# # @profile
# def make_pokemon_red_overlay(counts):
# nonzero = np.where(counts > 0, 1, 0)
# scaled = np.clip(counts, 0, 1000) / 1000.0
# # Convert counts to hue map
# hsv = np.zeros((*counts.shape, 3))
# hsv[..., 0] = (240.0 / 360) - scaled * (240.0 / 360.0) # bad heatmap with too much icky light green 2*(1-scaled)/3
# hsv[..., 1] = nonzero
# hsv[..., 2] = nonzero
# # Convert the HSV image to RGB
# import matplotlib.colors as mcolors
# overlay = 255*mcolors.hsv_to_rgb(hsv)
# # Upscale to 16x16
# kernel = np.ones((16, 16, 1), dtype=np.uint8)
# overlay = np.kron(overlay, kernel).astype(np.uint8)
# mask = np.kron(nonzero, kernel[..., 0]).astype(np.uint8)
# mask = np.stack([mask, mask, mask], axis=-1).astype(bool)
# # Combine with background
# render = BG.copy().astype(np.int32)
# render[mask] = 0.2*render[mask] + 0.8*overlay[mask]
# render = np.clip(render, 0, 255).astype(np.uint8)
# return render
# # snapshot3=tracemalloc.take_snapshot()
# # snapshot5=tracemalloc.take_snapshot()
# # @profile
# def matplotlib_table_map_generate(counts):
# i = 0
# while i < 1:
# # Read the checkpoints data
# try:
# time_checkpoint, stats_checkpoint = read_checkpoint_logs()
# except Exception as e:
# print(f"Failed to read checkpoint logs: {e}")
# time_checkpoint, stats_checkpoint = {}, {}
# # Read the epoch sps data
# try:
# with open("experiments/run_stats.txt", "r") as file:
# epoch_sps = file.readline().strip()
# except Exception as e:
# print(f"Failed to read epoch sps data: {e}")
# epoch_sps = "Unavailable"
# # Assuming there's data in the checkpoints, proceed to create the DataFrame
# if time_checkpoint and stats_checkpoint:
# # Extract data for table
# milestones = list(time_checkpoint.keys())
# times = [time_checkpoint[milestone] for milestone in milestones]
# means = [stats_checkpoint[milestone]['mean'] for milestone in milestones]
# # variances = [stats_checkpoint[milestone]['variance'] for milestone in milestones]
# std_devs = [stats_checkpoint[milestone]['std_dev'] for milestone in milestones]
# data = {
# 'Milestone': milestones,
# 'Time (min)': times,
# 'Mean': means,
# # 'Variance': variances,
# 'Std Dev': std_devs
# }
# df = pd.DataFrame(data)
# else:
# print("Checkpoint data is empty. Creating an empty DataFrame.")
# df = pd.DataFrame()
# plt.style.use("dark_background")
# fig, (table_ax, img_ax) = plt.subplots(
# 1, 2, figsize=(32, 22), gridspec_kw={'width_ratios': [1, 2]}
# )
# # Print the Epoch SPS at the top left of the whole image
# fig.text(0.005, 0.995, f'Epoch SPS: {epoch_sps}', color='0.35', fontsize=40, ha='left', va='top')
# table_ax.axis("off")
# font_size = 30
# # fontdict = {'fontsize': 30}
# get_font_dict = lambda x: {'fontsize': x}
# # Calculate relative column widths
# widths = []
# # widths_1 = []
# for col in df.columns:
# # max_width_1 = max([get_text_width_1(str(x), get_font_dict(font_size)) for x in df[col].tolist() + [col]])
# max_width = max([get_text_width(str(x), get_font_dict(font_size)) for x in df[col].tolist() + [col]])
# # print(f'max_width={max_width}')
# # print(f'max_width_1={max_width_1}')
# widths.append(max_width)
# # widths_1.append(max_width_1)
# total_width = sum(widths)
# # total_width_1 = sum(widths_1)
# rel_widths = [w / total_width for w in widths]
# # rel_widths_1 = [w / total_width_1 for w in widths_1]
# rel_widths[0] = rel_widths[0] * 1.1
# rel_widths[2] = rel_widths[2] * 1.1
# # rel_widths_1[0] = rel_widths_1[0] * 1.1
# # print(f'rel_widths = {rel_widths}')
# # print(f'rel_widths_1 = {rel_widths_1}')
# cell_height = 0.035 # Convert font size in points to inches
# # Create the table with relative column widths
# the_table = table_ax.table(cellText=df.values, colLabels=df.columns, loc='upper center', colWidths=rel_widths)
# # Set table style
# the_table.auto_set_font_size(False)
# the_table.set_fontsize(font_size)
# # Define the colors for headings and different columns
# heading_color = '#ff7f0e' # Deep blue for the headings
# column_colors = ['#1f77b4', '#2ca02c', '#9467bd', '#8c564b'] # Orange, Green, Purple, Brown
# edge_color = '0.75'
# # Iterate over the cells and set colors
# for (row, col), cell in the_table.get_celld().items():
# if row == 0: # This is a heading
# cell.get_text().set_color(heading_color)
# cell.set_facecolor('black') # Heading background color
# cell.set_edgecolor('white')
# else: # These are data cells
# cell_color = column_colors[col] if col < len(column_colors) else 'black' # Default to black if no color is defined
# cell.get_text().set_color(cell_color)
# cell.set_facecolor('black') # Data cell background color
# cell.set_edgecolor(f'{edge_color}')
# cell.set_height(cell_height)
# # Image subplot
# # img = plt.imread("kanto_map_dsv.png")
# img = make_pokemon_red_overlay(counts)
# img_ax.imshow(img)
# img_ax.axis("off")
# fig.tight_layout()
# # Save the figure to a NumPy array
# fig.canvas.draw()
# width, height = fig.get_size_inches() * fig.get_dpi()
# table_image_rgba = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
# table_image_rgba = table_image_rgba.reshape(int(height), int(width), -1)
# plt.close('all')
# cv2.destroyAllWindows()
# return table_image_rgba
# def rollout(env_creator, env_kwargs, agent_creator, agent_kwargs, model_path=None, device='cuda', verbose=True):
# env = env_creator(**env_kwargs)
# if model_path is None:
# agent = agent_creator(env, **agent_kwargs)
# else:
# agent = torch.load(model_path, map_location=device)
# terminal = truncated = True
# while True:
# if terminal or truncated:
# if verbose:
# print('--- Reset ---')
# ob, info = env.reset()
# state = None
# step = 0
# return_val = 0
# ob = torch.tensor(ob).unsqueeze(0).to(device)
# with torch.no_grad():
# if hasattr(agent, 'lstm'):
# action, _, _, _, state = agent.get_action_and_value(ob, state)
# else:
# action, _, _, _ = agent.get_action_and_value(ob)
# ob, reward, terminal, truncated, _ = env.step(action[0].item())
# return_val += reward
# counts_map = env.env.counts_map
# if np.sum(counts_map) > 0 and step % 500 == 0:
# # overlay = make_pokemon_red_overlay(sum(counts_map))
# data_image = matplotlib_table_map_generate(sum(counts_map))
# cv2.imshow('Pokemon Red', data_image[1000:][::4, ::4])
# cv2.waitKey(100)
# cv2.destroyAllWindows()
# if verbose:
# print(f'Step: {step} Reward: {reward:.4f} Return: {return_val:.2f}')
# if not env_kwargs['headless']:
# env.render()
# step += 1