-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpost_process.py
123 lines (81 loc) · 3.2 KB
/
post_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import h5py
import os
import numpy as np
import argparse
from tqdm import tqdm
from util import HTML
def mkdir_p(path):
if not os.path.exists(path):
os.makedirs(path)
def get_window_size(window_type):
if window_type == 'lung':
center = -700;
width = 1500;
elif window_type == 'abdomen':
center = 40
width = 400
elif window_type == 'bone':
center = 300
width = 2000
else:
raise ValueError("window type not recognized, expect 'lung|abdomen|bone")
return center, width
def transfer2window(input, window_type):
center, width = get_window_size(window_type)
dicom_raw_tmp = input.astype(np.float32) - 1024
dicom_raw = dicom_raw_tmp[:,:,1];
dicom_window = ((dicom_raw -(center-0.5))/(width-1)+0.5)*255;
dicom_window[dicom_raw<=center-0.5-(width-1)/2] = 0;
dicom_window[dicom_raw>center-0.5+(width-1)/2] = 255;
dicom_window.astype(np.uint8)
return dicom_window
parser = argparse.ArgumentParser(description='extract images from .h5 file')
parser.add_argument('--window', help='window to display the image', required=True)
parser.add_argument('--results_dir', default='./results', help='folder of the results')
parser.add_argument('--name', type=str, default='SAGAN', help='experiment_name')
parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to use for evaluation')
parser.add_argument('--web_dir', help='root path to put the generated html file', default='.')
opt = parser.parse_args()
def post_process(input_root, target_root, output_root, opt):
print('start post-processing ...')
f = h5py.File(result_file_name, 'r')
folder_dic = {'input': input_root, 'output': output_root, 'target': target_root }
for i in tqdm(range(len(f.keys()))):
group_key = list(f.keys())[i]
name_lists = group_key.split('_')
output_type = name_lists[1]
filename = name_lists[2]
img = np.array(f.get(group_key))
img = img/22*65535
img = np.transpose(img.astype(np.uint16), (1,2,0))
if opt.window != 'none':
img = transfer2window(img, opt.window)
cv2.imwrite(os.path.join(folder_dic[output_type], filename), img)
webpage = HTML(opt.web_dir, 'Experiment name = SAGAN', reflesh=1)
webpage.add_header('SAGAN test results {} window'.format(opt.window))
ims, txts, links = [], [], []
for i in range(len(f.keys())):
group_key = list(f.keys())[i]
name_lists = group_key.split('_')
filename = name_lists[2]
for key, vp in folder_dic.items():
ims.append(os.path.join(vp, filename))
txts.append('{}: {}'.format(key, filename))
links.append(os.path.join(vp, filename))
webpage.add_images(ims, txts, links, width=256)
ims, txts, links = [], [], []
webpage.save('index.html')
f.close()
print('post-processing finished')
if __name__=='__main__':
result_root = os.path.join(opt.results_dir, opt.name, '{}_net_G_test'.format(opt.which_epoch))
result_file_name = os.path.join(result_root, 'result.h5' );
output_root = os.path.join(result_root, 'output' );
input_root = os.path.join(result_root, 'input' );
target_root = os.path.join(result_root, 'target' );
index_file = os.path.join(result_root,'index.html')
mkdir_p(output_root)
mkdir_p(input_root)
mkdir_p(target_root)
post_process(input_root, target_root, output_root, opt)