-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy pathtrain.py
166 lines (131 loc) · 4.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Train the MobileNet V2 model
"""
import os
import sys
import argparse
import pandas as pd
from mobilenet_v2 import MobileNetv2
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping
from keras.layers import Conv2D, Reshape, Activation
from keras.models import Model
def main(argv):
parser = argparse.ArgumentParser()
# Required arguments.
parser.add_argument(
"--classes",
help="The number of classes of dataset.")
# Optional arguments.
parser.add_argument(
"--size",
default=224,
help="The image size of train sample.")
parser.add_argument(
"--batch",
default=32,
help="The number of train samples per batch.")
parser.add_argument(
"--epochs",
default=300,
help="The number of train iterations.")
parser.add_argument(
"--weights",
default=False,
help="Fine tune with other weights.")
parser.add_argument(
"--tclasses",
default=0,
help="The number of classes of pre-trained model.")
args = parser.parse_args()
train(int(args.batch), int(args.epochs), int(args.classes), int(args.size), args.weights, int(args.tclasses))
def generate(batch, size):
"""Data generation and augmentation
# Arguments
batch: Integer, batch size.
size: Integer, image size.
# Returns
train_generator: train set generator
validation_generator: validation set generator
count1: Integer, number of train set.
count2: Integer, number of test set.
"""
# Using the data Augmentation in traning data
ptrain = 'data/train'
pval = 'data/validation'
datagen1 = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
rotation_range=90,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
datagen2 = ImageDataGenerator(rescale=1. / 255)
train_generator = datagen1.flow_from_directory(
ptrain,
target_size=(size, size),
batch_size=batch,
class_mode='categorical')
validation_generator = datagen2.flow_from_directory(
pval,
target_size=(size, size),
batch_size=batch,
class_mode='categorical')
count1 = 0
for root, dirs, files in os.walk(ptrain):
for each in files:
count1 += 1
count2 = 0
for root, dirs, files in os.walk(pval):
for each in files:
count2 += 1
return train_generator, validation_generator, count1, count2
def fine_tune(num_classes, weights, model):
"""Re-build model with current num_classes.
# Arguments
num_classes, Integer, The number of classes of dataset.
tune, String, The pre_trained model weights.
model, Model, The model structure.
"""
model.load_weights(weights)
x = model.get_layer('Dropout').output
x = Conv2D(num_classes, (1, 1), padding='same')(x)
x = Activation('softmax', name='softmax')(x)
output = Reshape((num_classes,))(x)
model = Model(inputs=model.input, outputs=output)
return model
def train(batch, epochs, num_classes, size, weights, tclasses):
"""Train the model.
# Arguments
batch: Integer, The number of train samples per batch.
epochs: Integer, The number of train iterations.
num_classes, Integer, The number of classes of dataset.
size: Integer, image size.
weights, String, The pre_trained model weights.
tclasses, Integer, The number of classes of pre-trained model.
"""
train_generator, validation_generator, count1, count2 = generate(batch, size)
if weights:
model = MobileNetv2((size, size, 3), tclasses)
model = fine_tune(num_classes, weights, model)
else:
model = MobileNetv2((size, size, 3), num_classes)
opt = Adam()
earlystop = EarlyStopping(monitor='val_acc', patience=30, verbose=0, mode='auto')
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
hist = model.fit_generator(
train_generator,
validation_data=validation_generator,
steps_per_epoch=count1 // batch,
validation_steps=count2 // batch,
epochs=epochs,
callbacks=[earlystop])
if not os.path.exists('model'):
os.makedirs('model')
df = pd.DataFrame.from_dict(hist.history)
df.to_csv('model/hist.csv', encoding='utf-8', index=False)
model.save_weights('model/weights.h5')
if __name__ == '__main__':
main(sys.argv)