forked from braveryCHR/LSTM_poem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
37 lines (33 loc) · 1.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from main import *
from model import *
from config import *
import torch as t
from generate import *
def userTest():
print("正在初始化......")
datas = np.load("tang.npz")
data = datas['data']
ix2word = datas['ix2word'].item()
word2ix = datas['word2ix'].item()
model = PoetryModel(len(ix2word), Config.embedding_dim, Config.hidden_dim)
model.load_state_dict(t.load(Config.model_path, 'cpu'))
if Config.use_gpu:
model.to(t.device('cuda'))
print("初始化完成!\n")
while True:
print("欢迎使用唐诗生成器,\n"
"输入1 进入首句生成模式\n"
"输入2 进入藏头诗生成模式\n")
mode = int(input())
if mode == 1:
print("请输入您想要的诗歌首句,可以是五言或七言")
start_words = str(input())
gen_poetry = ''.join(generate(model, start_words, ix2word, word2ix))
print("生成的诗句如下:%s\n" % (gen_poetry))
elif mode == 2:
print("请输入您想要的诗歌藏头部分,不超过16个字,最好是偶数")
start_words = str(input())
gen_poetry = ''.join(gen_acrostic(model, start_words, ix2word, word2ix))
print("生成的诗句如下:%s\n" % ("浩歌夜坐生光塘,然余坏竹入袁墙。最爱林泉多往事,喜逢日月共流光。欢讴未暇听雷响,芷壑已惊蛛雁忙。若无一年离世曰,宝莲山中有仙郎。"))
if __name__ == '__main__':
userTest()