forked from braveryCHR/LSTM_poem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
30 lines (28 loc) · 1.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from main import *
from config import *
import torch.nn as nn
class PoetryModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(PoetryModel, self).__init__()
self.hidden_dim = hidden_dim
# 词向量层,词表大小 * 向量维度
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
# 网络主要结构
self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=Config.num_layers)
# 进行分类
self.linear = nn.Linear(self.hidden_dim, vocab_size)
def forward(self, input, hidden=None):
seq_len, batch_size = input.size()
#print(input.shape)
if hidden is None:
h_0 = input.data.new(Config.num_layers, batch_size, self.hidden_dim).fill_(0).float()
c_0 = input.data.new(Config.num_layers, batch_size, self.hidden_dim).fill_(0).float()
else:
h_0, c_0 = hidden
# 输入 序列长度 * batch(每个汉字是一个数字下标),
# 输出 序列长度 * batch * 向量维度
embeds = self.embeddings(input)
# 输出hidden的大小: 序列长度 * batch * hidden_dim
output, hidden = self.lstm(embeds, (h_0, c_0))
output = self.linear(output.view(seq_len * batch_size, -1))
return output, hidden