forked from expeditionary-robotics/informative-path-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonmyopic_experiments.py
141 lines (122 loc) · 6.04 KB
/
nonmyopic_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# !/usr/bin/python
'''
Script for running myopic experiments using the run_sim bash script.
Generally a function of convenience in the event of parallelizing simulation runs.
Note: some of the parameters may need to be set prior to running the bash script.
License: MIT
Maintainers: Genevieve Flaspohler and Victoria Preston
'''
import os
import time
import sys
import logging
import numpy as np
import argparse
import aq_library as aqlib
import mcts_library as mctslib
import gpmodel_library as gplib
import evaluation_library as evalib
import paths_library as pathlib
import envmodel_library as envlib
import robot_library as roblib
import obstacles as obslib
# Initialize command line options
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--seed", action="store", type=int, help="Random seed for environment generation.", default = 0)
parser.add_argument("-r", "--reward", action="store", help="Reward function. Should be mes, ei, or info_gain.", default = 'naive_value')
parser.add_argument("-p", "--pathset", action="store", help="Action set type. Should be dubins, ...", default = 'dubins')
parser.add_argument("-t", "--tree", action="store", help="If using nonmyopic planner, what kind of tree serach. Should be dpw or belief.", default = 'dpw')
parser.add_argument("-n", "--nonmyopic", action="store_true", help="Run planner in nonmyopic mode if flag set.", default = False)
parser.add_argument("-c", "--cost", action="store_true", help="Divide reward of action by cost if flag set.", default = False)
parser.add_argument("-g", "--goal", action="store_true", help="Consider the reward of final point only if flag set.", default = False)
# Parse command line options
parse = parser.parse_args()
# Read command line options
SEED = parse.seed
REWARD_FUNCTION = parse.reward
PATHSET = parse.pathset
USE_COST = parse.cost
NONMYOPIC = parse.nonmyopic
GOAL_ONLY = parse.goal
TREE_TYPE = parse.tree
DIM = 2 #2
DURATION = 1
LENGTHSCALE = 1# (2.5, 2.5, 30) #1
# Parameters for plotting based on the seed world information
MIN_COLOR = -25.
MAX_COLOR = 25.
# Set up paths for logging the data from the simulation run
if not os.path.exists('./figures/' + str(REWARD_FUNCTION)):
os.makedirs('./figures/' + str(REWARD_FUNCTION))
logging.basicConfig(filename = './figures/'+ REWARD_FUNCTION + '/robot.log', level = logging.INFO)
logger = logging.getLogger('robot')
# Create a random enviroment sampled from a GP with an RBF kernel and specified hyperparameters, mean function 0
# The enviorment will be constrained by a set of uniformly distributed sample points of size NUM_PTS x NUM_PTS
ranges = (0., 10., 0., 10.)
# Create obstacle world
ow = obslib.FreeWorld()
# ow = obslib.ChannelWorld(ranges, (3.5, 7.), 3., 0.3)
# ow = obslib.BugTrap(ranges, (2.2, 3.0), 4.6, orientation = 'left', width = 5.0)
# ow = obslib.BlockWorld(ranges,12, dim_blocks=(1., 1.), centers=[(2.5, 2.5), (7.,4.), (5., 8.), (8.75, 6.), (3.5,6.), (6.,1.5), (1.75,5.), (6.2,6.), (8.,8.5), (4.2, 3.8), (8.75,2.5), (2.2,8.2)])
world = envlib.Environment(ranges = ranges,
NUM_PTS = 20,
variance = 100.0, # TODO: why is only the lengthscale a vector for asymmetric kernels?
lengthscale = LENGTHSCALE,
noise = 0.5,
dim = DIM,
visualize = True,
seed = SEED,
MIN_COLOR = MIN_COLOR,
MAX_COLOR = MAX_COLOR,
obstacle_world = ow,
time_duration = DURATION)
# noise= 5.0)
# Create the evaluation class used to quantify the simulation metrics
evaluation = evalib.Evaluation(world = world, reward_function = REWARD_FUNCTION)
# Generate a prior dataset
x1observe = np.linspace(ranges[0], ranges[1], 20)
x2observe = np.linspace(ranges[2], ranges[3], 20)
x1observe, x2observe = np.meshgrid(x1observe, x2observe, sparse = False, indexing = 'xy')
if DIM == 2:
data = np.vstack([x1observe.ravel(), x2observe.ravel()]).T
elif DIM == 3:
data = np.vstack([x1observe.ravel(), x2observe.ravel(), 0*np.ones(len(x1observe.ravel()))]).T
observations = world.sample_value(data)
# Define the algorithm parameters
kwargs = { 'sample_world': world.sample_value,
'start_loc': (5.0, 5.0, 0.0), #where robot is instantiated
'start_time' : 0.0, #time at which robot is instantiated
'extent': ranges, #extent of the explorable environment
'kernel_file': None,
'kernel_dataset': None,
#'prior_dataset': (data, observations),
'prior_dataset': None,
'init_lengthscale': LENGTHSCALE,
'init_variance': 100.0,
'noise': 0.5000,
'path_generator': PATHSET, #options: default, dubins, equal_dubins, fully_reachable_goal, fully_reachable_step
'goal_only': GOAL_ONLY, #select only if using fully reachable step and you want the reward of the step to only be the goal
'frontier_size': 15,
'horizon_length': 1.5,
'turning_radius': 0.05,
'sample_step': 0.5,
'evaluation': evaluation,
'f_rew': REWARD_FUNCTION,
'create_animation': True, #logs images to the file folder
'learn_params': False, #if kernel params should be trained online
'nonmyopic': NONMYOPIC,
'discretization': (20, 20), #parameterizes the fully reachable sets
'use_cost': USE_COST, #select if you want to use a cost heuristic
'MIN_COLOR': MIN_COLOR,
'MAX_COLOR': MAX_COLOR,
'computation_budget': 250,
'rollout_length': 5,
'obstacle_world' : ow,
'tree_type': TREE_TYPE,
'dimension': DIM}
# Create the point robot
robot = roblib.Robot(**kwargs)
robot.planner(T = 150)
#robot.visualize_world_model(screen = True)
robot.visualize_trajectory(screen = False) #creates a summary trajectory image
robot.plot_information() #plots all of the metrics of interest