forked from expeditionary-robotics/informative-path-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_star_convergence.py
350 lines (284 loc) · 13.7 KB
/
evaluate_star_convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# !/usr/bin/python
'''
Script for running myopic experiments using the run_sim bash script.
Generally a function of convenience in the event of parallelizing simulation runs.
Note: some of the parameters may need to be set prior to running the bash script.
=======
License: MIT
Maintainers: Genevieve Flaspohler and Victoria Preston
'''
import os
import time
import sys
import logging
import numpy as np
import scipy as sp
import pdb
import aq_library as aqlib
import mcts_library as mctslib
import gpmodel_library as gplib
import evaluation_library as evalib
import paths_library as pathlib
import envmodel_library as envlib
import robot_library as roblib
import obstacles as obslib
import bag_utils as baglib
from scipy.spatial import distance
import matplotlib.pyplot as plt
''' Predict the maxima of a GP model '''
def predict_max(GP):
# If no observations have been collected, return default value
if GP.xvals is None:
return np.array([0., 0.]), 0.
''' First option, return the max value observed so far '''
#return self.GP.xvals[np.argmax(GP.zvals), :], np.max(GP.zvals)
''' Second option: generate a set of predictions from model and return max '''
# Generate a set of observations from robot model with which to predict mean
x1vals = np.linspace(GP.ranges[0], GP.ranges[1], 30)
x2vals = np.linspace(GP.ranges[2], GP.ranges[3], 30)
x1, x2 = np.meshgrid(x1vals, x2vals, sparse = False, indexing = 'xy')
data = np.vstack([x1.ravel(), x2.ravel()]).T
observations, var = GP.predict_value(data)
max_loc, max_val = data[np.argmax(observations), :], np.max(observations)
fig2, ax2 = plt.subplots(figsize=(8, 8))
plot = ax2.contourf(x1, x2, observations.reshape(x1.shape), 25, cmap = 'viridis')
scatter = ax2.scatter(GP.xvals[:, 0], GP.xvals[:, 1], c='k', s = 20.0, cmap = 'viridis')
scatter = ax2.scatter(data[:, 0], data[:, 1], c='b', s = 10.0, cmap = 'viridis')
scatter = ax2.scatter(max_loc[0], max_loc[1], c='r', s = 20.0, cmap = 'viridis')
plt.show()
return max_loc, max_val
''' Quantify entropy of star distribution and visaulize the star heatmap '''
def star_max_dist(GP, true_loc, true_val):
# If no observations have been collected, return default value
if GP.xvals is None: #TODO: remember to change this
print "Skipping star analysis prediction!"
return 0.0, 0.0, 0.0, 0.0
max_vals, max_locs, func = aqlib.sample_max_vals(GP, t = 0, nK = 20)
max_vals = np.array(max_vals).reshape((-1, 1))
max_locs = np.array(max_locs).reshape((-1, 2))
np.savetxt('./sl_sampled_maxes.csv', np.vstack((max_locs.T, max_vals.T)))
SAVE_FLAG = True
true_loc = np.array(true_loc).reshape((-1, 2))
true_val = np.array(true_val).reshape((-1, 1))
# Compute average distance from stars to true loc
dist_loc = distance.cdist(max_locs, true_loc, 'euclidean')
dist_val = distance.cdist(max_vals, true_val, 'euclidean')
NBINS = 50
RANGE = np.array([(ranges[0], ranges[1]), (ranges[2], ranges[3])])
# Create the star heatmap
if SAVE_FLAG:
plt.figure(figsize=(8,8))
# plt.hist2d(max_locs[:, 0], max_locs[:, 1], bins = NBINS, normed = True, range = RANGE, cmap = 'magma', norm=mcolors.LogNorm())
plt.hist2d(max_locs[:, 0], max_locs[:, 1], bins = NBINS, normed = True, range = RANGE, cmap = 'viridis')
plt.colorbar()
plt.savefig('./star_heatmap_test.png')
# plt.show()
plt.close()
# Compute the histrogram entropy of the star distribution
ALPHA = 0.99
hist, xbins, ybins = np.histogram2d(max_locs[:, 0], max_locs[:, 1], bins = NBINS, normed = True, range = RANGE)
uniform = np.ones(hist.shape) / np.sum(np.ones(hist.shape))
histnorm = ALPHA * hist + (1. - ALPHA) * uniform
histnorm = histnorm / np.sum(histnorm)
entropy_x = -np.sum(histnorm[histnorm > 0.0] * np.log(histnorm[histnorm > 0.0]))
# Uniform santiy check
# uniform = np.ones(hist.shape) / np.sum(np.ones(hist.shape))
# unifrom_entropy = -np.sum(uniform[uniform > 0.0] * np.log(uniform[uniform > 0.0]))
# print "Entropy of a uniform distribution:", unifrom_entropy
hist_z, xbins_z = np.histogram(max_vals, bins = NBINS, density = True)
uniform = np.ones(hist_z.shape) / np.sum(np.ones(hist_z.shape))
hist_z = hist_z / np.sum(hist_z)
entropy_z = -np.mean(np.log(hist_z[hist_z > 0.0]))
return np.mean(dist_loc), np.mean(dist_val), entropy_x, entropy_z
print "User specified options: SEED, REWARD_FUNCTION, PATHSET, USE_COST, NONMYOPIC, GOAL_ONLY, TREE_TYPE, RUN_REAL"
# Allow selection of seed world to be consistent, and to run through reward functions
SEED = int(sys.argv[1])
# SEED = 0
REWARD_FUNCTION = sys.argv[2]
PATHSET = sys.argv[3]
USE_COST = (sys.argv[4] == "True")
NONMYOPIC = (sys.argv[5] == "True")
GOAL_ONLY = (sys.argv[6] == "True")
TREE_TYPE = sys.argv[7] # one of dpw or belief
RUN_REAL_EXP = (sys.argv[8] == "True") # one of dpw or belief
if RUN_REAL_EXP:
MAX_COLOR = 2.50
MIN_COLOR = -3.00
# MAX_COLOR = None
# MIN_COLOR = None
ranges = (0.0, 50.0, 0.0, 50.0)
else:
MAX_COLOR = 25.0
MIN_COLOR = -25.0
ranges = (0.0, 0.0, 10.0, 10.0)
# MAX_COLOR = None
# MIN_COLOR = None
# Parameters for plotting based on the seed world information
# Set up paths for logging the data from the simulation run
if not os.path.exists('./figures/' + str(REWARD_FUNCTION)):
os.makedirs('./figures/' + str(REWARD_FUNCTION))
logging.basicConfig(filename = './figures/'+ REWARD_FUNCTION + '/robot.log', level = logging.INFO)
logger = logging.getLogger('robot')
# Create a random enviroment sampled from a GP with an RBF kernel and specified hyperparameters, mean function 0
# The enviorment will be constrained by a set of uniformly distributed sample points of size NUM_PTS x NUM_PTS
# Create obstacle world
ow = obslib.FreeWorld()
# ow = obslib.ChannelWorld(ranges, (3.5, 7.), 3., 0.3)
# ow = obslib.BugTrap(ranges, (2.2, 3.0), 4.6, orientation = 'left', width = 5.0)
# ow = obslib.BlockWorld(ranges,12, dim_blocks=(1., 1.), centers=[(2.5, 2.5), (7.,4.), (5., 8.), (8.75, 6.), (3.5,6.), (6.,1.5), (1.75,5.), (6.2,6.), (8.,8.5), (4.2, 3.8), (8.75,2.5), (2.2,8.2)])
if RUN_REAL_EXP:
''' Bagging '''
xfull, zfull = baglib.read_fulldataset()
# Add subsampled data from a previous bagifle
seed_bag = '/home/genevieve/mit-whoi/barbados/rosbag_15Jan_slicklizard/slicklizard_2019-01-15-20-22-16.bag'
xseed, zseed = baglib.read_bagfile(seed_bag, 20)
# PLUMES trials
seed_bag = '/home/genevieve/mit-whoi/barbados/rosbag_16Jan_slicklizard/slicklizard_2019-01-17-03-01-44.bag'
xobs, zobs = baglib.read_bagfile(seed_bag, 1)
trunc_index = baglib.truncate_by_distance(xobs, dist_lim = 1000.0)
print "PLUMES trunc:", trunc_index
xobs = xobs[0:trunc_index, :]
zobs = zobs[0:trunc_index, :]
# Myopic trials
# seed_bag = '/home/genevieve/mit-whoi/barbados/rosbag_16Jan_slicklizard/slicklizard_2019-01-17-03-43-09.bag'
# xobs, zobs = baglib.read_bagfile(seed_bag, 1)
# trunc_index = baglib.truncate_by_distance(xobs, dist_lim = 1000.0)
# print "myopic trunc:", trunc_index
# xobs = xobs[0:trunc_index, :]
# zobs = zobs[0:trunc_index, :]
# Lawnmower trials
seed_bag = '/home/genevieve/mit-whoi/barbados/rosbag_16Jan_slicklizard/slicklizard_2019-01-16-16-12-40.bag'
xobs, zobs = baglib.read_bagfile(seed_bag, 1)
trunc_index = baglib.truncate_by_distance(xobs, dist_lim = 1000.0)
print "Lawnmower trunc:", trunc_index
xobs = xobs[0:trunc_index, :]
zobs = zobs[0:trunc_index, :]
xobs = np.vstack([xseed, xobs])
zobs = np.vstack([zseed, zobs])
LEN = 2.0122
VAR = 5.3373 / 10.0
NOISE = 0.19836 / 10.0
# Create the GP model
# gp_world = gplib.GPModel(ranges, lengthscale = 4.0543111858072445, variance = 0.3215773006606948, noise = 0.0862445597387173)
gp_world = gplib.GPModel(ranges, lengthscale = LEN, variance = VAR, noise = NOISE)
gp_world.add_data(xfull[::5], zfull[::5])
# VAR = 0.3215773006606948
# LEN = 4.0543111858072445
# NOISE = 0.0862445597387173
LEN = 2.0122
VAR = 5.3373 / 10.0
NOISE = 0.19836 / 10.0
else:
gp_world = None
# VAR = 50.0
# LEN = 5.0
# NOISE = 0.1
VAR = 100.0
LEN = 1.0
NOISE = 1.0
world = envlib.Environment(ranges = ranges,
NUM_PTS = 100,
variance = VAR,
lengthscale = LEN,
noise = NOISE,
visualize = True,
seed = SEED,
MAX_COLOR = MAX_COLOR,
MIN_COLOR = MIN_COLOR,
model = gp_world,
obstacle_world = ow)
# Create the evaluation class used to quantify the simulation metrics
evaluation = evalib.Evaluation(world = world, reward_function = REWARD_FUNCTION)
# Generate a prior dataset
'''
x1observe = np.linspace(ranges[0], ranges[1], 5)
x2observe = np.linspace(ranges[2], ranges[3], 5)
x1observe, x2observe = np.meshgrid(x1observe, x2observe, sparse = False, indexing = 'xy')
data = np.vstack([x1observe.ravel(), x2observe.ravel()]).T
observations = world.sample_value(data)
'''
print "Creating robot!"
# Create the point robot
robot = roblib.Robot(sample_world = world.sample_value, #function handle for collecting observations
start_loc = (5.0, 5.0, 0.0), #where robot is instantiated
extent = ranges, #extent of the explorable environment
MAX_COLOR = MAX_COLOR,
MIN_COLOR = MIN_COLOR,
kernel_file = None,
kernel_dataset = None,
# prior_dataset = (data, observations),
prior_dataset = (xobs, zobs),
# prior_dataset = None,
init_lengthscale = LEN,
init_variance = VAR,
noise = NOISE,
# init_lengthscale = 2.0122,
# init_variance = 5.3373,
# noise = 0.19836,
# noise = float(sys.argv[1]),
path_generator = PATHSET, #options: default, dubins, equal_dubins, fully_reachable_goal, fully_reachable_step
goal_only = GOAL_ONLY, #select only if using fully reachable step and you want the reward of the step to only be the goal
frontier_size = 10,
horizon_length = 1.50,
turning_radius = 0.11,
sample_step = 0.1,
evaluation = evaluation,
f_rew = REWARD_FUNCTION,
create_animation = True, #logs images to the file folder
learn_params = False, #if kernel params should be trained online
nonmyopic = NONMYOPIC,
discretization = (20, 20), #parameterizes the fully reachable sets
use_cost = USE_COST, #select if you want to use a cost heuristic
computation_budget = 250,
rollout_length = 1,
obstacle_world = ow,
tree_type = TREE_TYPE)
print "Done creating robot!"
if RUN_REAL_EXP:
print "Evaluating!"
true_val = np.array(world.max_val).reshape((-1, 1))
true_loc = np.array(world.max_loc).reshape((-1, 2))
''' Compute error in maxima prediction '''
loc_guess, val_guess = predict_max(robot.GP)
err_x = np.linalg.norm(loc_guess - true_loc)
err_z = np.linalg.norm(val_guess - true_val)
print "Estimation error in x, z:", err_x, err_z
''' Compute entropy of star samples '''
dist_err, val_err, h_x, h_z = star_max_dist(robot.GP, true_loc, true_val)
print "Star estimation error in x, z:", dist_err, val_err
print "Star entropy error in x, z:", h_x, h_z
''' Compute proportions of data witihin delta-epsilon regions '''
samp_dist_loc = distance.cdist(robot.GP.xvals, true_loc, 'euclidean')
samp_dist_val = distance.cdist(robot.GP.zvals, true_val, 'euclidean')
pdb.set_trace()
print samp_dist_loc[samp_dist_loc < 10.0]
print samp_dist_val[samp_dist_val < 0.5]
prop_x = float(len(samp_dist_loc[samp_dist_loc < 10.])) / float(len(samp_dist_loc))
prop_z = float(len(samp_dist_val[samp_dist_val < 0.5])) / float(len(samp_dist_val))
print "Proportion in x, z:", prop_x, prop_z
max_vals, max_locs, func = aqlib.sample_max_vals(robot.GP, t = 0, nK = 20, obstacles = ow)
max_vals= np.array(max_vals).reshape((-1, 1))
max_locs = np.array(max_locs).reshape((-1, 2))
dist_loc = distance.cdist(max_locs, true_loc, 'euclidean')
dist_val = distance.cdist(max_vals, true_val, 'euclidean')
np.savetxt('./sampled_maxes.csv', np.vstack((max_locs.T, max_vals.T)))
np.savetxt('./true_maxes.csv', np.vstack((true_loc.T, true_val.T)))
print "Distance mean location:", np.mean(dist_loc), "\t Value:", np.mean(dist_val)
loc_kernel = sp.stats.gaussian_kde(max_locs.T)
loc_kernel.set_bandwidth(bw_method=LEN)
density_loc = loc_kernel(max_locs.T)
density_loc = density_loc / np.sum(density_loc)
entropy_loc = -np.mean(np.log(density_loc))
print density_loc
print "Entropy of star location:", entropy_loc
val_kernel = sp.stats.gaussian_kde(max_vals.T)
val_kernel.set_bandwidth(bw_method='silverman')
density_val = val_kernel(max_vals.T)
density_val = density_val / np.sum(density_val)
entropy_val = -np.mean(np.log(density_val))
print "Entropy of star value:", entropy_val
else:
robot.planner(T = 150)
robot.visualize_world_model(screen = True)
robot.visualize_trajectory(screen = False) #creates a summary trajectory image
robot.plot_information() #plots all of the metrics of interest